The human oral cavity is home to a delicate symbiosis between its indigenous microbiota and the host, the balance of which is easily perturbed by local or systemic factors, leading to a spectrum of oral diseases such as dental caries, periodontitis, and pulp infections. Reactive oxygen species (ROS) play crucial roles in the host's innate immune defenses. However, in chronic inflammatory oral conditions, dysregulated immune responses can result in excessive ROS production, which in turn exacerbates inflammation and causes tissue damage. Conversely, the potent antimicrobial properties of ROS have inspired the development of various anti-infective therapies. Therefore, the strategic modulation of ROS by innovative biomaterials is emerging as a promising therapeutic approach for oral infection and inflammation. This review begins by highlighting the state-of-the-art of ROS-regulating biomaterials, which are designed to generate, scavenge, or modulate ROS in a bidirectional manner. We then delve into the latest innovations in these biomaterials and their applications in treating a range of oral diseases, including dental caries, endodontic and periapical conditions, periodontitis, peri-implantitis, and oral candidiasis. The review concludes with an overview of the current challenges and future potential of these biomaterials in clinical settings. This review provides novel insights for the ongoing development of ROS-based therapeutic strategies for oral diseases.