Using machine learning to predict the probability of incident 2-year depression in older adults with chronic diseases: a retrospective cohort study

接收机工作特性 逻辑回归 萧条(经济学) 随机森林 阿达布思 医学 队列 人口 重性抑郁障碍 统计 人工智能 机器学习 支持向量机 计算机科学 精神科 内科学 数学 经济 宏观经济学 认知 环境卫生
作者
Ying Zheng,Taotao Zhang,Shu Yang,Fuzhi Wang,Li Zhang,Yuwen Liu
出处
期刊:BMC Psychiatry [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12888-024-06299-6
摘要

Older adults with chronic diseases are at higher risk of depressive symptoms than those without. For the onset of depressive symptoms, the prediction ability of changes in common risk factors over a 2-year follow-up period is unclear in the Chinese older population. This study aimed to build risk prediction models (RPMs) to estimate the probability of incident 2-year depression using data from the China Health and Retirement Longitudinal Study (CHARLS). Four ML algorithms (logistic regression [LR], AdaBoost, random forest [RF] and k-nearest neighbor [kNN]) were applied to develop RPMs using the 2011–2015 cohort data. These developed models were then validated with 2018–2020 survey data. We evaluated the model performance using discrimination and calibration metrics, including an area under the receiver operating characteristic curve (AUROC) and the precision-recall curve (AUPRC), accuracy, sensitivity and calibrations plot. Finally, we explored the key factors of depressive symptoms by the selected best predictive models. This study finally included 7,121 participants to build models to predict depressive symptoms, finding a 21.5% prevalence of depression. Combining the Synthetic Minority Oversampling Technique (SMOTE) with the logistic regression model (LR-SM) exhibited superior precision to predict depression than other models, with an AUROC and AUPRC of 0.612 and 0.468, respectively, an accuracy of 0.619 and a sensitivity of 0.546. In additiona, external validation of the LR-SM model using data from the 2018–2020 data also demonstrated good predictive ability with an AUROC of 0.623 (95% CI: 0.555– 0.673). Sex, self-rated health status, occupation, eyesight, memory and life satisfaction were identified as impactful predictors of depression. Our developed models exhibited high accuracy, good discrimination and calibration profiles in predicting two-year risk of depression among older adults with chronic diseases. This model can be used to identify Chinese older population at high risk of depression and intervene in a timely manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微尘完成签到,获得积分10
刚刚
1秒前
xdf发布了新的文献求助10
4秒前
4秒前
橘子皮完成签到,获得积分10
5秒前
ABEDO完成签到 ,获得积分10
5秒前
Lee完成签到,获得积分10
6秒前
木有发布了新的文献求助10
6秒前
白鹤完成签到 ,获得积分10
6秒前
6秒前
小二郎应助Lin采纳,获得10
7秒前
9秒前
10秒前
冷傲士萧发布了新的文献求助10
11秒前
cgmil发布了新的文献求助10
13秒前
14秒前
马蹄啸发布了新的文献求助10
15秒前
烟花应助兔兜采纳,获得10
15秒前
杨小坤完成签到 ,获得积分10
15秒前
情怀应助euphoria采纳,获得10
17秒前
honest桂给honest桂的求助进行了留言
19秒前
李健的小迷弟应助1234采纳,获得10
20秒前
20秒前
buno应助潘二毛采纳,获得10
20秒前
冷傲士萧完成签到,获得积分10
20秒前
悦耳溪流完成签到,获得积分10
21秒前
隐形曼青应助清脆的夜云采纳,获得10
22秒前
兔兜完成签到,获得积分10
23秒前
clyhg完成签到,获得积分10
23秒前
Taylon完成签到,获得积分10
23秒前
Singularity应助学习采纳,获得10
24秒前
圈圈关注了科研通微信公众号
24秒前
高高雪枫应助wzh采纳,获得30
25秒前
25秒前
筱诸雄完成签到,获得积分10
26秒前
lyc发布了新的文献求助10
26秒前
27秒前
可爱的沁完成签到,获得积分10
29秒前
111完成签到,获得积分10
29秒前
FashionBoy应助专一的书雪采纳,获得10
29秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214017
求助须知:如何正确求助?哪些是违规求助? 2862762
关于积分的说明 8135155
捐赠科研通 2528993
什么是DOI,文献DOI怎么找? 1363127
科研通“疑难数据库(出版商)”最低求助积分说明 643769
邀请新用户注册赠送积分活动 616184