Using machine learning to predict the probability of incident 2-year depression in older adults with chronic diseases: a retrospective cohort study

接收机工作特性 逻辑回归 萧条(经济学) 随机森林 阿达布思 医学 队列 人口 重性抑郁障碍 统计 人工智能 机器学习 支持向量机 计算机科学 精神科 内科学 数学 经济 认知 宏观经济学 环境卫生
作者
Ying Zheng,Taotao Zhang,Shu Yang,Fuzhi Wang,Li Zhang,Yuwen Liu
出处
期刊:BMC Psychiatry [BioMed Central]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12888-024-06299-6
摘要

Older adults with chronic diseases are at higher risk of depressive symptoms than those without. For the onset of depressive symptoms, the prediction ability of changes in common risk factors over a 2-year follow-up period is unclear in the Chinese older population. This study aimed to build risk prediction models (RPMs) to estimate the probability of incident 2-year depression using data from the China Health and Retirement Longitudinal Study (CHARLS). Four ML algorithms (logistic regression [LR], AdaBoost, random forest [RF] and k-nearest neighbor [kNN]) were applied to develop RPMs using the 2011–2015 cohort data. These developed models were then validated with 2018–2020 survey data. We evaluated the model performance using discrimination and calibration metrics, including an area under the receiver operating characteristic curve (AUROC) and the precision-recall curve (AUPRC), accuracy, sensitivity and calibrations plot. Finally, we explored the key factors of depressive symptoms by the selected best predictive models. This study finally included 7,121 participants to build models to predict depressive symptoms, finding a 21.5% prevalence of depression. Combining the Synthetic Minority Oversampling Technique (SMOTE) with the logistic regression model (LR-SM) exhibited superior precision to predict depression than other models, with an AUROC and AUPRC of 0.612 and 0.468, respectively, an accuracy of 0.619 and a sensitivity of 0.546. In additiona, external validation of the LR-SM model using data from the 2018–2020 data also demonstrated good predictive ability with an AUROC of 0.623 (95% CI: 0.555– 0.673). Sex, self-rated health status, occupation, eyesight, memory and life satisfaction were identified as impactful predictors of depression. Our developed models exhibited high accuracy, good discrimination and calibration profiles in predicting two-year risk of depression among older adults with chronic diseases. This model can be used to identify Chinese older population at high risk of depression and intervene in a timely manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
予张完成签到,获得积分10
刚刚
1秒前
1秒前
荡秋千的猴子完成签到,获得积分10
2秒前
认真摆烂发布了新的文献求助10
2秒前
Owen应助聪明蛋采纳,获得10
2秒前
略略略发布了新的文献求助10
2秒前
所所应助雄鹰般的女人采纳,获得10
2秒前
菲菲呀发布了新的文献求助10
3秒前
顾天理发布了新的文献求助10
4秒前
Youmad发布了新的文献求助10
4秒前
5秒前
英姑应助lvv采纳,获得10
5秒前
6秒前
Fushuai完成签到,获得积分10
6秒前
完美世界应助摩登兄弟采纳,获得10
7秒前
WD关闭了WD文献求助
7秒前
有足量NaCl发布了新的文献求助10
8秒前
hhh发布了新的文献求助10
9秒前
iNk应助Carho采纳,获得20
9秒前
LMBE1K完成签到 ,获得积分10
10秒前
认真摆烂完成签到,获得积分10
11秒前
H7发布了新的文献求助10
11秒前
知音有畅发布了新的文献求助10
11秒前
苏三三发布了新的文献求助10
12秒前
12秒前
14秒前
糯米锤发布了新的文献求助10
16秒前
yi完成签到,获得积分10
17秒前
17秒前
Rondab应助Snow采纳,获得10
18秒前
H7完成签到,获得积分10
19秒前
墨染锦年完成签到,获得积分10
19秒前
哈哈哈kk完成签到,获得积分10
20秒前
情怀应助1177采纳,获得10
20秒前
20秒前
20秒前
20秒前
lvv发布了新的文献求助10
21秒前
123hkd发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992152
求助须知:如何正确求助?哪些是违规求助? 3533140
关于积分的说明 11261281
捐赠科研通 3272545
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809439