Using machine learning to predict the probability of incident 2-year depression in older adults with chronic diseases: a retrospective cohort study

接收机工作特性 逻辑回归 萧条(经济学) 随机森林 阿达布思 医学 队列 人口 重性抑郁障碍 统计 人工智能 机器学习 支持向量机 计算机科学 精神科 内科学 数学 经济 宏观经济学 认知 环境卫生
作者
Ying Zheng,Taotao Zhang,Shu Yang,Fuzhi Wang,Li Zhang,Yuwen Liu
出处
期刊:BMC Psychiatry [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12888-024-06299-6
摘要

Older adults with chronic diseases are at higher risk of depressive symptoms than those without. For the onset of depressive symptoms, the prediction ability of changes in common risk factors over a 2-year follow-up period is unclear in the Chinese older population. This study aimed to build risk prediction models (RPMs) to estimate the probability of incident 2-year depression using data from the China Health and Retirement Longitudinal Study (CHARLS). Four ML algorithms (logistic regression [LR], AdaBoost, random forest [RF] and k-nearest neighbor [kNN]) were applied to develop RPMs using the 2011–2015 cohort data. These developed models were then validated with 2018–2020 survey data. We evaluated the model performance using discrimination and calibration metrics, including an area under the receiver operating characteristic curve (AUROC) and the precision-recall curve (AUPRC), accuracy, sensitivity and calibrations plot. Finally, we explored the key factors of depressive symptoms by the selected best predictive models. This study finally included 7,121 participants to build models to predict depressive symptoms, finding a 21.5% prevalence of depression. Combining the Synthetic Minority Oversampling Technique (SMOTE) with the logistic regression model (LR-SM) exhibited superior precision to predict depression than other models, with an AUROC and AUPRC of 0.612 and 0.468, respectively, an accuracy of 0.619 and a sensitivity of 0.546. In additiona, external validation of the LR-SM model using data from the 2018–2020 data also demonstrated good predictive ability with an AUROC of 0.623 (95% CI: 0.555– 0.673). Sex, self-rated health status, occupation, eyesight, memory and life satisfaction were identified as impactful predictors of depression. Our developed models exhibited high accuracy, good discrimination and calibration profiles in predicting two-year risk of depression among older adults with chronic diseases. This model can be used to identify Chinese older population at high risk of depression and intervene in a timely manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助三只兔子采纳,获得10
刚刚
ash发布了新的文献求助10
刚刚
刚刚
古风发布了新的文献求助10
刚刚
1秒前
幽默书瑶发布了新的文献求助10
3秒前
大个应助xiaodu采纳,获得10
5秒前
123发布了新的文献求助10
5秒前
zdd完成签到,获得积分10
5秒前
自洽发布了新的文献求助10
6秒前
power完成签到,获得积分10
6秒前
亗sui完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
赘婿应助侠侠大王采纳,获得10
9秒前
11秒前
11秒前
舒服的寒松完成签到 ,获得积分10
11秒前
大方的乌冬面完成签到 ,获得积分10
12秒前
伶俐黄豆应助xiaobai123456采纳,获得10
13秒前
Inevitable发布了新的文献求助10
13秒前
调皮的笑阳完成签到 ,获得积分10
13秒前
14秒前
18秒前
脑洞疼应助hh采纳,获得10
18秒前
由凡发布了新的文献求助10
19秒前
19秒前
Mic应助ash采纳,获得10
20秒前
CorrectSTH完成签到,获得积分10
22秒前
Owen应助xiao采纳,获得10
24秒前
24秒前
zoushiyi完成签到 ,获得积分10
27秒前
Inevitable完成签到,获得积分10
28秒前
28秒前
禾风完成签到,获得积分10
28秒前
地形图完成签到 ,获得积分10
32秒前
33秒前
35秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5842960
求助须知:如何正确求助?哪些是违规求助? 6177670
关于积分的说明 15610714
捐赠科研通 4960102
什么是DOI,文献DOI怎么找? 2674103
邀请新用户注册赠送积分活动 1618937
关于科研通互助平台的介绍 1574172