Using machine learning to predict the probability of incident 2-year depression in older adults with chronic diseases: a retrospective cohort study

接收机工作特性 逻辑回归 萧条(经济学) 随机森林 阿达布思 医学 队列 人口 重性抑郁障碍 统计 人工智能 机器学习 支持向量机 计算机科学 精神科 内科学 数学 经济 宏观经济学 认知 环境卫生
作者
Ying Zheng,Taotao Zhang,Shu Yang,Fuzhi Wang,Li Zhang,Yuwen Liu
出处
期刊:BMC Psychiatry [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12888-024-06299-6
摘要

Older adults with chronic diseases are at higher risk of depressive symptoms than those without. For the onset of depressive symptoms, the prediction ability of changes in common risk factors over a 2-year follow-up period is unclear in the Chinese older population. This study aimed to build risk prediction models (RPMs) to estimate the probability of incident 2-year depression using data from the China Health and Retirement Longitudinal Study (CHARLS). Four ML algorithms (logistic regression [LR], AdaBoost, random forest [RF] and k-nearest neighbor [kNN]) were applied to develop RPMs using the 2011–2015 cohort data. These developed models were then validated with 2018–2020 survey data. We evaluated the model performance using discrimination and calibration metrics, including an area under the receiver operating characteristic curve (AUROC) and the precision-recall curve (AUPRC), accuracy, sensitivity and calibrations plot. Finally, we explored the key factors of depressive symptoms by the selected best predictive models. This study finally included 7,121 participants to build models to predict depressive symptoms, finding a 21.5% prevalence of depression. Combining the Synthetic Minority Oversampling Technique (SMOTE) with the logistic regression model (LR-SM) exhibited superior precision to predict depression than other models, with an AUROC and AUPRC of 0.612 and 0.468, respectively, an accuracy of 0.619 and a sensitivity of 0.546. In additiona, external validation of the LR-SM model using data from the 2018–2020 data also demonstrated good predictive ability with an AUROC of 0.623 (95% CI: 0.555– 0.673). Sex, self-rated health status, occupation, eyesight, memory and life satisfaction were identified as impactful predictors of depression. Our developed models exhibited high accuracy, good discrimination and calibration profiles in predicting two-year risk of depression among older adults with chronic diseases. This model can be used to identify Chinese older population at high risk of depression and intervene in a timely manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助JJ索采纳,获得10
1秒前
安详发布了新的文献求助10
1秒前
1秒前
李健的小迷弟应助Ruby采纳,获得10
2秒前
Momomo应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小二郎应助XIAOWANG采纳,获得10
3秒前
小郭子应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
小郭子应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
hotongue完成签到,获得积分10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
dudu应助科研通管家采纳,获得10
3秒前
wy.he应助科研通管家采纳,获得10
3秒前
wy.he应助科研通管家采纳,获得10
3秒前
3秒前
蒹葭苍苍应助科研通管家采纳,获得10
3秒前
小郭子应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
小郭子应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
蒹葭苍苍应助科研通管家采纳,获得10
3秒前
蒹葭苍苍应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
科目三应助科研通管家采纳,获得30
3秒前
科目三应助科研通管家采纳,获得30
3秒前
dudu应助科研通管家采纳,获得10
3秒前
dudu应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896