已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Progress and Strategies of MOFs in Catalyzing Conversion Processes in Lithium‐Sulfur Batteries

锂(药物) 硫黄 化学 纳米技术 材料科学 有机化学 医学 内分泌学
作者
Yaru Wang,Xingyou Rao,Zhengdao Pan,Yan Zhao,Yalong Zheng,Yichao Luo,Xinyu Jiang,Yutong Wu,Xiang Liu,Zhoulu Wang,Yi Zhang
出处
期刊:Batteries & supercaps [Wiley]
标识
DOI:10.1002/batt.202400484
摘要

Abstract Lithium‐sulfur (Li−S) batteries have attracted considerable attention due to their advantages, such as high specific capacity, high energy density, environmental friendliness, and low cost. However, the severe capacity fading caused by shuttle effect of polysulfide needs to be addressed before the practical application of Li−S batteries. Crystalline porous materials including MOFs have generated great interest in energy storage fields especially batteries, because the ordered porous frameworks can offer a fast‐ionic transportation. Nevertheless, the intrinsic low conductivity of MOFs limits their rapid development in lithium‐sulfur batteries. This review mainly discusses the latest research progress on MOF main materials in Li−S batteries. The working principle of Li−S batteries and the classical “adsorption‐catalysis‐conversion” strategy are briefly introduced. Specifically, three modification methods (non‐metal atom doping, single‐atom, and dual‐atom doping modifications) applied in MOF‐based materials are analyzed and summarized, along with their respective mechanisms and advantages and disadvantages. Ligand doping is an effective strategy that can regulate the structure and properties of MOFs, thereby enhancing their catalytic activity and adsorption capacity towards polysulfides. Through ligand doping, key parameters such as the pore size, surface charge, and active site density of MOFs can be controlled, thereby influencing the adsorption and conversion of polysulfides on MOFs surfaces. Furthermore, crucial insights for the rational design of advanced MOF‐based materials for lithium‐sulfur batteries and the exploration of the main challenges and future directions for their application were also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助害怕的谷兰采纳,获得10
刚刚
5秒前
org发布了新的文献求助10
6秒前
香蕉觅云应助rachel采纳,获得10
7秒前
打打应助zai采纳,获得10
9秒前
sl完成签到 ,获得积分10
12秒前
12秒前
14秒前
llnysl完成签到 ,获得积分10
15秒前
kuro发布了新的文献求助10
15秒前
17秒前
充电宝应助雪山飞鹰采纳,获得10
17秒前
杳鸢应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
杳鸢应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
zai发布了新的文献求助10
22秒前
科研通AI2S应助DDS采纳,获得10
27秒前
28秒前
善良的诗珊完成签到 ,获得积分10
28秒前
32秒前
CipherSage应助当当采纳,获得10
33秒前
番茄炒蛋完成签到 ,获得积分10
34秒前
34秒前
QUU完成签到 ,获得积分10
34秒前
fancy完成签到 ,获得积分10
34秒前
积极马里奥完成签到 ,获得积分10
36秒前
疯狂的易梦完成签到 ,获得积分10
36秒前
小黄人完成签到 ,获得积分10
37秒前
40秒前
菠萝头完成签到 ,获得积分10
41秒前
孤芳自赏IrisKing完成签到 ,获得积分10
44秒前
46秒前
冷艳的一区完成签到 ,获得积分10
46秒前
47秒前
科研通AI2S应助马马虎虎采纳,获得10
47秒前
shjyang完成签到,获得积分0
49秒前
当当发布了新的文献求助10
52秒前
火翟丰丰山心完成签到 ,获得积分10
53秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234449
求助须知:如何正确求助?哪些是违规求助? 2880760
关于积分的说明 8216976
捐赠科研通 2548347
什么是DOI,文献DOI怎么找? 1377713
科研通“疑难数据库(出版商)”最低求助积分说明 647944
邀请新用户注册赠送积分活动 623304