Impact of Iterative Bilateral Filtering on the Noise Power Spectrum of Computed Tomography Images

噪音(视频) 成像体模 图像噪声 像素 滤波器(信号处理) 光传递函数 数学 双边滤波器 降噪 暗框减法 核(代数) 光谱密度 人工智能 物理 光学 计算机视觉 计算机科学 中值滤波器 图像处理 图像(数学) 统计 组合数学
作者
Khoirul Anam,Ariij Naufal,Heri Sutanto,Kusworo Adi,Geoff Dougherty
出处
期刊:Algorithms [MDPI AG]
卷期号:15 (10): 374-374 被引量:6
标识
DOI:10.3390/a15100374
摘要

A bilateral filter is a non-linear denoising algorithm that can reduce noise while preserving the edges. This study explores the characteristics of a bilateral filter in changing the noise and texture within computed tomography (CT) images in an iterative implementation. We collected images of a homogeneous Neusoft phantom scanned with tube currents of 77, 154, and 231 mAs. The images for each tube current were filtered five times with a configuration of sigma space (σd) = 2 pixels, sigma intensity (σr) = noise level, and a kernel of 5 × 5 pixels. To observe the noise texture in each filter iteration, the noise power spectrum (NPS) was obtained for the five slices of each dataset and averaged to generate a stable curve. The modulation-transfer function (MTF) was also measured from the original and the filtered images. Tests on an anthropomorphic phantom image were carried out to observe their impact on clinical scenarios. Noise measurements and visual observations of edge sharpness were performed on this image. Our results showed that the bilateral filter was effective in suppressing noise at high frequencies, which is confirmed by the sloping NPS curve for different tube currents. The peak frequency was shifted from about 0.2 to about 0.1 mm−1 for all tube currents, and the noise magnitude was reduced by more than 50% compared to the original images. The spatial resolution does not change with the number of iterations of the filter, which is confirmed by the constant values of MTF50 and MTF10. The test results on the anthropomorphic phantom image show a similar pattern, with noise reduced by up to 60% and object edges remaining sharp.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gost发布了新的文献求助10
2秒前
我是老大应助只只采纳,获得10
2秒前
努力小狗发布了新的文献求助10
3秒前
绵绵冰完成签到,获得积分10
4秒前
4秒前
JSDYCH完成签到,获得积分10
6秒前
王九八发布了新的文献求助10
6秒前
7秒前
qqqq发布了新的文献求助30
7秒前
肖恩发布了新的文献求助10
8秒前
十九岁的时差完成签到 ,获得积分10
9秒前
eee丶peng完成签到,获得积分20
9秒前
9秒前
香蕉觅云应助Kaka采纳,获得10
12秒前
13秒前
13秒前
完美世界应助土星采纳,获得10
13秒前
机灵亦凝完成签到,获得积分10
14秒前
kang发布了新的文献求助10
14秒前
溜了溜了发布了新的文献求助20
16秒前
皮肤科王东明完成签到,获得积分10
16秒前
张杠杠完成签到 ,获得积分10
17秒前
祁代芙发布了新的文献求助10
18秒前
19秒前
只只发布了新的文献求助10
20秒前
21秒前
缥缈的初阳完成签到,获得积分10
23秒前
24秒前
土星发布了新的文献求助10
24秒前
optical完成签到,获得积分10
25秒前
26秒前
fabian发布了新的文献求助10
27秒前
晚风中追风完成签到,获得积分10
29秒前
30秒前
huohuo143完成签到,获得积分10
30秒前
31秒前
gost发布了新的文献求助10
31秒前
fabian完成签到,获得积分10
32秒前
Triumph完成签到,获得积分10
32秒前
万刈完成签到,获得积分10
32秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269567
求助须知:如何正确求助?哪些是违规求助? 2909237
关于积分的说明 8348269
捐赠科研通 2579530
什么是DOI,文献DOI怎么找? 1402849
科研通“疑难数据库(出版商)”最低求助积分说明 655552
邀请新用户注册赠送积分活动 634808