Amplitude–Time Dual-View Fused EEG Temporal Feature Learning for Automatic Sleep Staging

脑电图 计算机科学 人工智能 模式识别(心理学) 可解释性 特征(语言学) 卷积神经网络 特征提取 睡眠阶段 信号(编程语言) 语音识别 卷积(计算机科学) 人工神经网络 心理学 多导睡眠图 哲学 程序设计语言 精神科 语言学
作者
Panfeng An,Jianhui Zhao,Bo Du,Wenyuan Zhao,Tingbao Zhang,Zhiyong Yuan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (5): 6492-6506 被引量:11
标识
DOI:10.1109/tnnls.2022.3210384
摘要

Electroencephalogram (EEG) plays an important role in studying brain function and human cognitive performance, and the recognition of EEG signals is vital to develop an automatic sleep staging system. However, due to the complex nonstationary characteristics and the individual difference between subjects, how to obtain the effective signal features of the EEG for practical application is still a challenging task. In this article, we investigate the EEG feature learning problem and propose a novel temporal feature learning method based on amplitude–time dual-view fusion for automatic sleep staging. First, we explore the feature extraction ability of convolutional neural networks for the EEG signal from the perspective of interpretability and construct two new representation signals for the raw EEG from the views of amplitude and time. Then, we extract the amplitude–time signal features that reflect the transformation between different sleep stages from the obtained representation signals by using conventional 1-D CNNs. Furthermore, a hybrid dilation convolution module is used to learn the long-term temporal dependency features of EEG signals, which can overcome the shortcoming that the small-scale convolution kernel can only learn the local signal variation information. Finally, we conduct attention-based feature fusion for the learned dual-view signal features to further improve sleep staging performance. To evaluate the performance of the proposed method, we test 30-s-epoch EEG signal samples for healthy subjects and subjects with mild sleep disorders. The experimental results from the most commonly used datasets show that the proposed method has better sleep staging performance and has the potential for the development and application of an EEG-based automatic sleep staging system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
majf发布了新的文献求助30
1秒前
1秒前
无语的傲丝完成签到,获得积分10
1秒前
xxxx完成签到,获得积分10
2秒前
儒雅谷芹完成签到,获得积分10
3秒前
3秒前
aoteman完成签到,获得积分20
4秒前
1122发布了新的文献求助20
4秒前
恒牙完成签到 ,获得积分10
4秒前
打打应助Cissy采纳,获得10
4秒前
打打应助Hemingwayway采纳,获得10
4秒前
罗啦啦大大滴完成签到 ,获得积分10
5秒前
5秒前
5秒前
这瓜不卖发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助ybb采纳,获得10
6秒前
汉堡包应助xiaowang采纳,获得10
6秒前
yiming完成签到,获得积分10
7秒前
sxy发布了新的文献求助10
7秒前
妩媚的强炫完成签到,获得积分10
8秒前
cookie发布了新的文献求助10
8秒前
8秒前
9秒前
桐桐应助likor采纳,获得30
10秒前
遁一完成签到,获得积分20
10秒前
lhqbit完成签到,获得积分10
10秒前
11秒前
最爱吃火锅完成签到,获得积分10
11秒前
健壮凡桃发布了新的文献求助10
11秒前
11秒前
12秒前
朴实问筠发布了新的文献求助10
12秒前
12秒前
水星逃逸发布了新的文献求助10
13秒前
Lucas应助Cochane采纳,获得10
14秒前
14秒前
14秒前
zhtingho完成签到,获得积分10
14秒前
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016711
求助须知:如何正确求助?哪些是违规求助? 3556869
关于积分的说明 11322988
捐赠科研通 3289588
什么是DOI,文献DOI怎么找? 1812514
邀请新用户注册赠送积分活动 888100
科研通“疑难数据库(出版商)”最低求助积分说明 812121