亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Amplitude–Time Dual-View Fused EEG Temporal Feature Learning for Automatic Sleep Staging

脑电图 计算机科学 人工智能 模式识别(心理学) 可解释性 特征(语言学) 卷积神经网络 特征提取 睡眠阶段 信号(编程语言) 语音识别 卷积(计算机科学) 人工神经网络 心理学 多导睡眠图 语言学 哲学 精神科 程序设计语言
作者
Panfeng An,Jianhui Zhao,Bo Du,Wenyuan Zhao,Tingbao Zhang,Zhiyong Yuan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (5): 6492-6506 被引量:11
标识
DOI:10.1109/tnnls.2022.3210384
摘要

Electroencephalogram (EEG) plays an important role in studying brain function and human cognitive performance, and the recognition of EEG signals is vital to develop an automatic sleep staging system. However, due to the complex nonstationary characteristics and the individual difference between subjects, how to obtain the effective signal features of the EEG for practical application is still a challenging task. In this article, we investigate the EEG feature learning problem and propose a novel temporal feature learning method based on amplitude–time dual-view fusion for automatic sleep staging. First, we explore the feature extraction ability of convolutional neural networks for the EEG signal from the perspective of interpretability and construct two new representation signals for the raw EEG from the views of amplitude and time. Then, we extract the amplitude–time signal features that reflect the transformation between different sleep stages from the obtained representation signals by using conventional 1-D CNNs. Furthermore, a hybrid dilation convolution module is used to learn the long-term temporal dependency features of EEG signals, which can overcome the shortcoming that the small-scale convolution kernel can only learn the local signal variation information. Finally, we conduct attention-based feature fusion for the learned dual-view signal features to further improve sleep staging performance. To evaluate the performance of the proposed method, we test 30-s-epoch EEG signal samples for healthy subjects and subjects with mild sleep disorders. The experimental results from the most commonly used datasets show that the proposed method has better sleep staging performance and has the potential for the development and application of an EEG-based automatic sleep staging system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hdaib发布了新的文献求助30
刚刚
2秒前
4秒前
zhang123笛发布了新的文献求助10
8秒前
星辰大海应助ttssooe采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得30
15秒前
在水一方应助科研通管家采纳,获得30
15秒前
15秒前
zhang123笛完成签到,获得积分10
20秒前
31秒前
钙钛矿电池发布了新的文献求助200
32秒前
32秒前
无花果应助一颗苹果采纳,获得10
36秒前
1900发布了新的文献求助10
37秒前
37秒前
空蝉发布了新的文献求助10
38秒前
38秒前
41秒前
科研通AI6应助空蝉采纳,获得10
47秒前
ivy发布了新的文献求助10
48秒前
Gryff完成签到 ,获得积分10
48秒前
1900完成签到,获得积分20
51秒前
52秒前
田様应助lxb采纳,获得10
56秒前
二狗完成签到 ,获得积分10
59秒前
光合作用完成签到,获得积分10
1分钟前
王令完成签到,获得积分10
1分钟前
务实书包完成签到,获得积分10
1分钟前
王令发布了新的文献求助10
1分钟前
彭于晏应助jamaisvu采纳,获得30
1分钟前
李爱国应助jamaisvu采纳,获得30
1分钟前
1分钟前
空空伊完成签到,获得积分10
1分钟前
1分钟前
Weiyu完成签到 ,获得积分10
1分钟前
1分钟前
silence完成签到 ,获得积分10
2分钟前
2分钟前
伯云完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528934
求助须知:如何正确求助?哪些是违规求助? 4618236
关于积分的说明 14562294
捐赠科研通 4557142
什么是DOI,文献DOI怎么找? 2497360
邀请新用户注册赠送积分活动 1477590
关于科研通互助平台的介绍 1448890