Amplitude–Time Dual-View Fused EEG Temporal Feature Learning for Automatic Sleep Staging

脑电图 计算机科学 人工智能 模式识别(心理学) 可解释性 特征(语言学) 卷积神经网络 特征提取 睡眠阶段 信号(编程语言) 语音识别 卷积(计算机科学) 人工神经网络 心理学 多导睡眠图 语言学 哲学 精神科 程序设计语言
作者
Panfeng An,Jianhui Zhao,Bo Du,Wenyuan Zhao,Tingbao Zhang,Zhiyong Yuan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (5): 6492-6506 被引量:11
标识
DOI:10.1109/tnnls.2022.3210384
摘要

Electroencephalogram (EEG) plays an important role in studying brain function and human cognitive performance, and the recognition of EEG signals is vital to develop an automatic sleep staging system. However, due to the complex nonstationary characteristics and the individual difference between subjects, how to obtain the effective signal features of the EEG for practical application is still a challenging task. In this article, we investigate the EEG feature learning problem and propose a novel temporal feature learning method based on amplitude–time dual-view fusion for automatic sleep staging. First, we explore the feature extraction ability of convolutional neural networks for the EEG signal from the perspective of interpretability and construct two new representation signals for the raw EEG from the views of amplitude and time. Then, we extract the amplitude–time signal features that reflect the transformation between different sleep stages from the obtained representation signals by using conventional 1-D CNNs. Furthermore, a hybrid dilation convolution module is used to learn the long-term temporal dependency features of EEG signals, which can overcome the shortcoming that the small-scale convolution kernel can only learn the local signal variation information. Finally, we conduct attention-based feature fusion for the learned dual-view signal features to further improve sleep staging performance. To evaluate the performance of the proposed method, we test 30-s-epoch EEG signal samples for healthy subjects and subjects with mild sleep disorders. The experimental results from the most commonly used datasets show that the proposed method has better sleep staging performance and has the potential for the development and application of an EEG-based automatic sleep staging system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
成就的沛菡完成签到 ,获得积分10
7秒前
zxy应助唐泽雪穗采纳,获得30
7秒前
Tysonqu完成签到,获得积分10
9秒前
sci_zt完成签到 ,获得积分10
9秒前
10秒前
易止完成签到 ,获得积分10
10秒前
欢呼的茗茗完成签到 ,获得积分10
11秒前
方方完成签到 ,获得积分10
11秒前
11秒前
丰富的慕卉完成签到,获得积分10
13秒前
孙晓燕完成签到 ,获得积分10
16秒前
20秒前
唐泽雪穗发布了新的文献求助30
20秒前
xczhu完成签到,获得积分0
21秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
Wayne完成签到 ,获得积分10
25秒前
忐忑的中心完成签到 ,获得积分10
26秒前
红糖订书机完成签到 ,获得积分10
31秒前
DD完成签到,获得积分10
31秒前
Lucas应助JUAN采纳,获得10
34秒前
量子星尘发布了新的文献求助10
35秒前
娜娜完成签到 ,获得积分10
35秒前
YHBBZ完成签到 ,获得积分10
35秒前
窝窝头完成签到 ,获得积分10
40秒前
CipherSage应助lin采纳,获得10
44秒前
zhangj696完成签到,获得积分10
44秒前
JUAN完成签到,获得积分10
46秒前
yinyin完成签到 ,获得积分10
46秒前
现代期待完成签到,获得积分10
47秒前
51秒前
握瑾怀瑜完成签到 ,获得积分0
51秒前
weng完成签到,获得积分10
52秒前
wxh完成签到 ,获得积分10
57秒前
uouuo完成签到 ,获得积分10
59秒前
羊白玉完成签到 ,获得积分0
1分钟前
缥缈的觅风完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
apt完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066726
求助须知:如何正确求助?哪些是违规求助? 4288676
关于积分的说明 13360388
捐赠科研通 4108050
什么是DOI,文献DOI怎么找? 2249494
邀请新用户注册赠送积分活动 1254924
关于科研通互助平台的介绍 1187333