Amplitude–Time Dual-View Fused EEG Temporal Feature Learning for Automatic Sleep Staging

脑电图 计算机科学 人工智能 模式识别(心理学) 可解释性 特征(语言学) 卷积神经网络 特征提取 睡眠阶段 信号(编程语言) 语音识别 卷积(计算机科学) 人工神经网络 心理学 多导睡眠图 语言学 哲学 精神科 程序设计语言
作者
Panfeng An,Jianhui Zhao,Bo Du,Wenyuan Zhao,Tingbao Zhang,Zhiyong Yuan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (5): 6492-6506 被引量:11
标识
DOI:10.1109/tnnls.2022.3210384
摘要

Electroencephalogram (EEG) plays an important role in studying brain function and human cognitive performance, and the recognition of EEG signals is vital to develop an automatic sleep staging system. However, due to the complex nonstationary characteristics and the individual difference between subjects, how to obtain the effective signal features of the EEG for practical application is still a challenging task. In this article, we investigate the EEG feature learning problem and propose a novel temporal feature learning method based on amplitude–time dual-view fusion for automatic sleep staging. First, we explore the feature extraction ability of convolutional neural networks for the EEG signal from the perspective of interpretability and construct two new representation signals for the raw EEG from the views of amplitude and time. Then, we extract the amplitude–time signal features that reflect the transformation between different sleep stages from the obtained representation signals by using conventional 1-D CNNs. Furthermore, a hybrid dilation convolution module is used to learn the long-term temporal dependency features of EEG signals, which can overcome the shortcoming that the small-scale convolution kernel can only learn the local signal variation information. Finally, we conduct attention-based feature fusion for the learned dual-view signal features to further improve sleep staging performance. To evaluate the performance of the proposed method, we test 30-s-epoch EEG signal samples for healthy subjects and subjects with mild sleep disorders. The experimental results from the most commonly used datasets show that the proposed method has better sleep staging performance and has the potential for the development and application of an EEG-based automatic sleep staging system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dylan21完成签到,获得积分10
刚刚
噼里啪啦完成签到,获得积分10
刚刚
活泼红牛完成签到,获得积分10
1秒前
我是老大应助西升东落采纳,获得10
2秒前
一呦呦完成签到,获得积分10
2秒前
2秒前
斯文鸡完成签到,获得积分10
2秒前
浮游应助yannna采纳,获得10
3秒前
LILI完成签到,获得积分10
3秒前
苏芳完成签到,获得积分10
4秒前
5秒前
无声瀑布完成签到,获得积分10
5秒前
wls完成签到 ,获得积分10
5秒前
热心网友完成签到,获得积分10
6秒前
lllllyyyyy关注了科研通微信公众号
6秒前
6秒前
roywin完成签到,获得积分10
6秒前
ZLQ完成签到,获得积分10
7秒前
bb完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
jjlyy完成签到,获得积分10
8秒前
8秒前
Sue完成签到 ,获得积分10
8秒前
8秒前
执着期待完成签到,获得积分10
9秒前
科研通AI6应助小仙女采纳,获得10
9秒前
对没错发布了新的文献求助10
10秒前
热锅上的蚂蚁完成签到,获得积分10
10秒前
调皮黄豆完成签到,获得积分10
10秒前
10秒前
cy发布了新的文献求助10
11秒前
SUN发布了新的文献求助10
11秒前
hadern发布了新的文献求助10
11秒前
大模型应助建设采纳,获得10
11秒前
11秒前
月落无痕2025完成签到,获得积分10
12秒前
谢谢发布了新的文献求助10
12秒前
dd完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401990
求助须知:如何正确求助?哪些是违规求助? 4520650
关于积分的说明 14080780
捐赠科研通 4434091
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426601
关于科研通互助平台的介绍 1405349