已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EMCAH-Net: an effective multi-scale context aggregation hybrid network for medical image segmentation

计算机科学 网(多面体) 背景(考古学) 分割 比例(比率) 人工智能 图像(数学) 数据挖掘 计算机视觉 地图学 地理 数学 几何学 考古
作者
Jin Yu,Rui Tian,Yu Qian,Qiang Cai,Guoqing Chao,Danqing Liu,Yanhui Guo
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:15 (4): 3064-3083
标识
DOI:10.21037/qims-24-1983
摘要

Background: Pixel-level medical image segmentation tasks are challenging due to factors such as variable target scales, complex geometric shapes, and low contrast. Although U-shaped hybrid networks have demonstrated strong performance, existing models often fail to effectively integrate the local features captured by convolutional neural networks (CNNs) with the global features provided by Transformers. Moreover, their self-attention mechanisms often lack adequate emphasis on critical spatial and channel information. To address these challenges, our goal was to develop a hybrid deep learning model that can effectively and robustly segment medical images, including but not limited to computed tomography (CT) and magnetic resonance (MR) images. Methods: We propose an effective hybrid U-shaped network, named the effective multi-scale context aggregation hybrid network (EMCAH-Net). It integrates an effective multi-scale context aggregation (EMCA) block in the backbone, along with a dual-attention augmented self-attention (DASA) block embedded in the skip connections and bottleneck layers. Aimed at the characteristics of medical images, the former block focuses on fine-grained local multi-scale feature encoding, whereas the latter enhances global representation learning by adaptively combining spatial and channel attention with self-attention. This approach not only effectively integrates local multi-scale and global features but also reinforces skip connections, thereby highlighting segmentation targets and precisely delineating boundaries. The code is publicly available at https://github.com/AloneIsland/EMCAH-Net. Results: Compared to previous state-of-the-art (SOTA) methods, the EMCAH-Net achieves outstanding performance in medical image segmentation, with Dice similarity coefficient (DSC) scores of 84.73% (+2.85), 92.33% (+0.27), and 82.47% (+0.76) on the Synapse, automated cardiac diagnosis challenge (ACDC), and digital retinal images for vessel extraction (DRIVE) datasets, respectively. Additionally, it maintains computational efficiency in terms of model parameters and floating point operations (FLOPs). For instance, EMCAH-Net surpasses TransUNet on the Synapse dataset by 7.25% in DSC while requiring only 25% of the parameters and 71% of the FLOPs. Conclusions: EMCAH-Net has demonstrated significant advantages in segmenting multi-scale, small, and boundary-blurred features in medical images. Extensive experiments on abdominal multi-organ, cardiac, and retinal vessel medical segmentation tasks confirm that EMCAH-Net surpasses previous methods, including pure CNN, pure Transformer, and hybrid architectures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
6秒前
初七123完成签到 ,获得积分10
9秒前
洁净白容发布了新的文献求助10
9秒前
不忘初心关注了科研通微信公众号
16秒前
努努完成签到 ,获得积分10
19秒前
23秒前
you完成签到,获得积分10
25秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
桐桐应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
英俊的铭应助科研通管家采纳,获得10
27秒前
NexusExplorer应助科研通管家采纳,获得10
27秒前
搜集达人应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
深情安青应助科研通管家采纳,获得10
27秒前
自信的九娘完成签到,获得积分10
29秒前
Xx发布了新的文献求助10
29秒前
31秒前
ding应助王开晙采纳,获得10
32秒前
32秒前
默11发布了新的文献求助10
36秒前
wanci应助Ye采纳,获得10
37秒前
无昵称完成签到 ,获得积分10
38秒前
39秒前
xr完成签到 ,获得积分10
39秒前
nihao完成签到,获得积分10
39秒前
完美世界应助ANDRT采纳,获得10
41秒前
42秒前
王开晙发布了新的文献求助10
44秒前
45秒前
45秒前
Lxk发布了新的文献求助10
46秒前
47秒前
orixero应助不忘初心采纳,获得10
49秒前
徐庆宝发布了新的文献求助10
50秒前
51秒前
热心的叫兽关注了科研通微信公众号
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760793
求助须知:如何正确求助?哪些是违规求助? 3304661
关于积分的说明 10130559
捐赠科研通 3018504
什么是DOI,文献DOI怎么找? 1657701
邀请新用户注册赠送积分活动 791653
科研通“疑难数据库(出版商)”最低求助积分说明 754529