Pixel2Pixel: A Pixelwise Approach for Zero-Shot Single Image Denoising

人工智能 图像去噪 降噪 计算机科学 模式识别(心理学) 计算机视觉 图像(数学) 弹丸 图像处理 零(语言学) 算法 数学 语言学 化学 哲学 有机化学
作者
Qing Ma,Junjun Jiang,Xiong Zhou,Pengwei Liang,Xianming Liu,Jiayi Ma
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tpami.2025.3546870
摘要

We propose Pixel2Pixel, a novel zero-shot image denoising framework that leverages the non-local self-similarity of images to generate a large number of training samples using only the input noisy image. This framework employs a compact convolutional neural network architecture to achieve high-quality image denoising. Given a single observed noisy image, we first aim to obtain multiple images with different noise versions. We ensure that the content remains as consistent as possible with the true signal of the noisy image while keeping the noise independent. Specifically, we construct a pixel bank tensor, where each pixel consists of the most similar pixels from the non-local region of the noisy image. Then, multiple training samples, also known as pseudo instances, can be derived from the pixel bank by randomly pixel sampling. By harnessing pixel- wise random sampling, Pixel2Pixel generates a large number of training pseudo instances, thus avoiding reliance on specific training data. In addition, this non-local pixel selection and random sampling strategy helps to break down the spatial correlation of real-world noise as well. Since the proposed method does not require accurate priors on the noise distribution and clean training images, it is suitable for a wide range of noise types and different noise levels, exhibiting strong generalization ability, especially in real noisy scenes. Extensive experiments across various noise types show that Pixel2Pixel outperforms existing methods. The code is available at https://github.com/qingma2016/Pixel2Pixel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助眼睛大亦绿采纳,获得10
1秒前
1秒前
Ava应助眼睛大亦绿采纳,获得10
1秒前
leeom完成签到,获得积分10
1秒前
科研通AI5应助眼睛大亦绿采纳,获得10
1秒前
乐乐应助虚拟的酸奶采纳,获得10
1秒前
飞鸟完成签到,获得积分10
2秒前
xiaobai发布了新的文献求助10
3秒前
3秒前
hahaha0102完成签到,获得积分10
4秒前
4秒前
小蘑菇应助SI采纳,获得10
4秒前
leeom发布了新的文献求助10
5秒前
SciGPT应助燊yy采纳,获得30
6秒前
弥淮发布了新的文献求助10
7秒前
bodhi发布了新的文献求助10
7秒前
newple发布了新的文献求助30
8秒前
英俊延恶发布了新的文献求助10
8秒前
9秒前
明明明完成签到,获得积分20
10秒前
11秒前
11秒前
科研通AI5应助眼睛大亦绿采纳,获得10
11秒前
科研通AI5应助白剑通采纳,获得30
12秒前
雪sung发布了新的文献求助20
12秒前
杨畅完成签到,获得积分10
12秒前
归尘应助直率忆秋采纳,获得10
12秒前
CipherSage应助planA采纳,获得10
13秒前
无花果应助kyyy采纳,获得10
13秒前
科研通AI5应助lk65734采纳,获得10
13秒前
乔树伟发布了新的文献求助10
14秒前
14秒前
hu11完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
Passion完成签到,获得积分10
16秒前
orixero应助烟火岸上采纳,获得10
18秒前
小小发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538670
求助须知:如何正确求助?哪些是违规求助? 3116388
关于积分的说明 9325077
捐赠科研通 2814221
什么是DOI,文献DOI怎么找? 1546519
邀请新用户注册赠送积分活动 720607
科研通“疑难数据库(出版商)”最低求助积分说明 712086