Toward Piezoresistive Devices That Exploit Bullvalene’s Structural Versatility

利用 压阻效应 纳米技术 材料科学 化学 计算机科学 光电子学 计算机安全
作者
Tiexin Li,Zane Datson,André P. Birvé,Simone Ciampi,Thomas Fallon,Daniel S. Kosov,Jeffrey R. Reimers,Nadim Darwish
出处
期刊:Langmuir [American Chemical Society]
标识
DOI:10.1021/acs.langmuir.4c04973
摘要

Bullvalene is the archetypical "shape shifting" molecule, undergoing continuous Cope rearrangements in solution at room temperature at a rate of about 3 kHz. In the confined spaces of an scanning tunneling microscopy break junction (STMBJ) setup, isolated bisarylbullvalene molecules have recently been shown to exhibit very restricted isomerization and slower interconversion rates. The restricted number of populated bullvalene isomers displayed large variances in conductivity with the confinement to manifest high piezoresistivity. Herein, the confinement is increased by forming self-assembled monolayers (SAMs), focusing on measuring the resulting electron-transfer rates, as well as identifying viable SAM structural possibilities. First, bis-4-phenyl acetylene bullvalene was synthesized and its SAMs were produced on Au(111). Redox active ferrocene tail groups were then attached via a copper catalyzed azide-alkyne cycloaddition (CuAAC) to enable electrochemical measurements of SAM coverages and electron-transfer rates. The results are consistent with only a single isomeric form being present on the surface at any one time, with its nature varying with monolayer coverage density. Density functional theory (DFT) simulations indicate that a combination of steric interactions induced by the bisarylbullvalene substitution, combined with head group and SAM packing effects, results in this coverage-dependent isomeric selectivity. A small number of very different types of SAM structural possibilities are identified. These findings provide a pathway forward for the exploitation of bullvalene's constitutional isomerism in facilitating nano-electromechanical systems (NEMS).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
1秒前
科目三应助一百度黑采纳,获得10
1秒前
1秒前
椰椰完成签到,获得积分10
2秒前
沉默襄发布了新的文献求助10
2秒前
Xiaopan完成签到 ,获得积分10
4秒前
开朗紫完成签到,获得积分10
4秒前
迪迦王完成签到,获得积分10
4秒前
大模型应助edtaa采纳,获得10
6秒前
unique发布了新的文献求助10
6秒前
6秒前
6秒前
随随发布了新的文献求助10
7秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
buqi发布了新的文献求助10
11秒前
FFFFFF发布了新的文献求助10
11秒前
一百度黑完成签到,获得积分10
12秒前
kdjc完成签到,获得积分10
13秒前
HF发布了新的文献求助10
13秒前
普鲁斯特完成签到,获得积分10
15秒前
赵十一完成签到,获得积分10
16秒前
今后应助我真的不是robot采纳,获得10
17秒前
自觉的绮烟完成签到,获得积分10
17秒前
17秒前
11发布了新的文献求助10
17秒前
垃圾智造者完成签到,获得积分10
18秒前
19秒前
天气很好我很好关注了科研通微信公众号
19秒前
缥缈凡旋完成签到,获得积分10
19秒前
buqi完成签到,获得积分10
20秒前
20秒前
21秒前
研友_VZG7GZ应助文艺安筠采纳,获得10
21秒前
顾矜应助扶风阁主采纳,获得10
22秒前
wanna完成签到,获得积分10
23秒前
ZJFL完成签到,获得积分10
24秒前
坦率尔蝶完成签到 ,获得积分10
24秒前
meng发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495259
求助须知:如何正确求助?哪些是违规求助? 4592967
关于积分的说明 14439338
捐赠科研通 4525803
什么是DOI,文献DOI怎么找? 2479715
邀请新用户注册赠送积分活动 1464544
关于科研通互助平台的介绍 1437385