热稳定性
底物特异性
乙醇
化学
酒
乙酰转移酶
生物化学
色谱法
生物
酶
乙酰化
基因
作者
Bingqian Ni,Zhilei Fu,Jingrong Zhao,Xin Yao,Weiwei Li,Xiuting Li,Baoguo Sun
标识
DOI:10.1021/acs.jafc.4c12376
摘要
Ethyl acetate, one of the most essential industrial compounds, has a broad range of applications, including flavors, fragrances, pharmaceuticals, cosmetics, and green solvents. Eat1 is accountable for bulk ethyl acetate production in yeasts, yet its properties and molecular mechanism are not well characterized. In this study, an eat1 gene from Hanseniaspora uvarum was obtained through gene mining. EatH showed the highest activity at pH 7.5 and 35 °C and preferred short-chain acyl substrates but had a broad alcohol substrate spectrum from short-chain primary alcohols to aromatic alcohols. Its Km and kcat/Km values toward pNPA were measured to be 1.16 mM and 29.03 L·mmol–1·s–1, respectively. The structure of EatH was composed of a lid domain and a core catalytic domain, with the catalytic triad of Ser124, Asp148, and His296. Additionally, crucial residues and their mechanism were analyzed through molecular docking, site-directed mutagenesis, and molecular dynamics simulation. The mutants N149A, N149K, and N149S showed enhanced enzyme activity toward pNP-hexanoate to 5.0-, 6.6-, and 3.6-fold, and Y204S enhanced enzyme activity for pNP-butyrate by 2.6 times via creating a wider substrate binding pocket and enhancing hydrophobicity. Collectively, this work provided a theoretical basis for the further rational design of EatH and enriched the understanding of the Eat family.
科研通智能强力驱动
Strongly Powered by AbleSci AI