Semantic segmentation of mechanical assembly using selective kernel convolution UNet with fully connected conditional random field

分割 计算机科学 人工智能 核(代数) 像素 条件随机场 模式识别(心理学) 计算机视觉 数学 组合数学
作者
Chengjun Chen,Chunlin Zhang,Jinlei Wang,Dongnian Li,Yang Li,Jun Hong
出处
期刊:Measurement [Elsevier BV]
卷期号:209: 112499-112499 被引量:1
标识
DOI:10.1016/j.measurement.2023.112499
摘要

Monitoring a mechanical assembly is vital for ensuring the quality of the mechanical products. In this study, each part of a mechanical assembly is recognized via precise segmentation of the mechanical assembly images to determine the assembly sequence of the mechanical products as well as to detect missing and false assemblies. For the segmentation of components in mechanical assembly images, this study proposes a method that combines a selective kernel convolution UNet with a fully connected conditional random field (DenseCRF) (SKC-UNet + DenseCRF). In the proposed SKC-UNet, an improved SKC-Net block is introduced in the coding network of UNet, which enables the neurons to automatically adjust the size of the receptive field on the basis of multiple scales of the received information. Thus, a dynamic selection mechanism can be realized and the number of parameters can be reduced drastically; therefore, the network becomes simpler. DenseCRF provides an image data-dependent smoothing term that allows similar labels to be assigned to pixels with similar properties in order to solve the problem of inaccurate details during mechanical assembly segmentation owing to the invariant properties of deep learning networks, thus improving the segmentation performance. The SKC-UNet + DenseCRF method was evaluated on three types of datasets containing mechanical assembly segmentation depth images. The results showed that the mean intersection over union (MIoU) of this method reached the optimum value on all the three datasets compared to other semantic segmentation networks. In summary, the proposed network is suitable for mechanical assembly segmentation tasks and can be applied to product assembly monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
LuoJiajun完成签到,获得积分10
刚刚
周周完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
Emma完成签到,获得积分10
1秒前
汪珊珊完成签到 ,获得积分10
2秒前
科研狗发布了新的文献求助10
2秒前
老苍发布了新的文献求助10
2秒前
3秒前
赘婿应助shuangcheng采纳,获得10
3秒前
葛葛完成签到,获得积分10
4秒前
4秒前
Arlene发布了新的文献求助10
4秒前
4秒前
lm18994782585发布了新的文献求助10
5秒前
jg完成签到,获得积分10
5秒前
yana完成签到,获得积分10
6秒前
可爱的函函应助一穷二百采纳,获得10
6秒前
Accept完成签到,获得积分10
6秒前
自觉的城发布了新的文献求助10
6秒前
星辰大海应助luqi采纳,获得10
7秒前
7秒前
7秒前
无奈电灯胆完成签到,获得积分10
7秒前
小鱼完成签到,获得积分10
8秒前
龙韵完成签到,获得积分10
8秒前
tramp应助逝水无痕采纳,获得10
8秒前
香蕉觅云应助xiaomi采纳,获得10
8秒前
zhengtingjin完成签到,获得积分10
9秒前
11秒前
11秒前
领导范儿应助12121采纳,获得10
11秒前
今者当歌发布了新的文献求助10
11秒前
11秒前
小晖晖完成签到,获得积分10
11秒前
顺利紫山完成签到,获得积分10
11秒前
yznfly应助霖昭采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969033
求助须知:如何正确求助?哪些是违规求助? 3513900
关于积分的说明 11170818
捐赠科研通 3249256
什么是DOI,文献DOI怎么找? 1794708
邀请新用户注册赠送积分活动 875326
科研通“疑难数据库(出版商)”最低求助积分说明 804759