亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semantic segmentation of mechanical assembly using selective kernel convolution UNet with fully connected conditional random field

分割 计算机科学 人工智能 核(代数) 像素 条件随机场 模式识别(心理学) 计算机视觉 数学 组合数学
作者
Chengjun Chen,Chunlin Zhang,Jinlei Wang,Dongnian Li,Yang Li,Jun Hong
出处
期刊:Measurement [Elsevier BV]
卷期号:209: 112499-112499 被引量:1
标识
DOI:10.1016/j.measurement.2023.112499
摘要

Monitoring a mechanical assembly is vital for ensuring the quality of the mechanical products. In this study, each part of a mechanical assembly is recognized via precise segmentation of the mechanical assembly images to determine the assembly sequence of the mechanical products as well as to detect missing and false assemblies. For the segmentation of components in mechanical assembly images, this study proposes a method that combines a selective kernel convolution UNet with a fully connected conditional random field (DenseCRF) (SKC-UNet + DenseCRF). In the proposed SKC-UNet, an improved SKC-Net block is introduced in the coding network of UNet, which enables the neurons to automatically adjust the size of the receptive field on the basis of multiple scales of the received information. Thus, a dynamic selection mechanism can be realized and the number of parameters can be reduced drastically; therefore, the network becomes simpler. DenseCRF provides an image data-dependent smoothing term that allows similar labels to be assigned to pixels with similar properties in order to solve the problem of inaccurate details during mechanical assembly segmentation owing to the invariant properties of deep learning networks, thus improving the segmentation performance. The SKC-UNet + DenseCRF method was evaluated on three types of datasets containing mechanical assembly segmentation depth images. The results showed that the mean intersection over union (MIoU) of this method reached the optimum value on all the three datasets compared to other semantic segmentation networks. In summary, the proposed network is suitable for mechanical assembly segmentation tasks and can be applied to product assembly monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小师叔完成签到,获得积分10
1秒前
3秒前
xiaoyu发布了新的文献求助10
7秒前
9秒前
11秒前
孙孙应助lQ采纳,获得10
11秒前
田一点发布了新的文献求助10
14秒前
田一点完成签到,获得积分10
19秒前
wansida完成签到,获得积分10
23秒前
喜悦宫苴完成签到,获得积分10
23秒前
28秒前
30秒前
辉哥发布了新的文献求助10
34秒前
量子星尘发布了新的文献求助10
35秒前
Lyl完成签到 ,获得积分10
38秒前
煜清清完成签到 ,获得积分10
44秒前
和谐山灵完成签到,获得积分20
47秒前
CodeCraft应助TIANNANXING采纳,获得10
49秒前
Akim应助辉哥采纳,获得10
49秒前
嗨是完成签到,获得积分10
51秒前
51秒前
54秒前
英俊的铭应助耷拉地啦采纳,获得10
57秒前
yang完成签到,获得积分10
57秒前
搜集达人应助一只小锦鲤采纳,获得10
59秒前
情怀应助白日梦采纳,获得10
1分钟前
NeilGu完成签到,获得积分10
1分钟前
1分钟前
星期五完成签到,获得积分10
1分钟前
TIANNANXING发布了新的文献求助10
1分钟前
聪明小于完成签到 ,获得积分10
1分钟前
1分钟前
火星上誉完成签到 ,获得积分10
1分钟前
1分钟前
天天摸鱼完成签到,获得积分10
1分钟前
zhao完成签到,获得积分10
1分钟前
FashionBoy应助木讷山采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520689
关于积分的说明 11204470
捐赠科研通 3257316
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613