Semantic segmentation of mechanical assembly using selective kernel convolution UNet with fully connected conditional random field

分割 计算机科学 人工智能 核(代数) 像素 条件随机场 模式识别(心理学) 计算机视觉 数学 组合数学
作者
Chengjun Chen,Chunlin Zhang,Jinlei Wang,Dongnian Li,Yang Li,Jun Hong
出处
期刊:Measurement [Elsevier]
卷期号:209: 112499-112499 被引量:1
标识
DOI:10.1016/j.measurement.2023.112499
摘要

Monitoring a mechanical assembly is vital for ensuring the quality of the mechanical products. In this study, each part of a mechanical assembly is recognized via precise segmentation of the mechanical assembly images to determine the assembly sequence of the mechanical products as well as to detect missing and false assemblies. For the segmentation of components in mechanical assembly images, this study proposes a method that combines a selective kernel convolution UNet with a fully connected conditional random field (DenseCRF) (SKC-UNet + DenseCRF). In the proposed SKC-UNet, an improved SKC-Net block is introduced in the coding network of UNet, which enables the neurons to automatically adjust the size of the receptive field on the basis of multiple scales of the received information. Thus, a dynamic selection mechanism can be realized and the number of parameters can be reduced drastically; therefore, the network becomes simpler. DenseCRF provides an image data-dependent smoothing term that allows similar labels to be assigned to pixels with similar properties in order to solve the problem of inaccurate details during mechanical assembly segmentation owing to the invariant properties of deep learning networks, thus improving the segmentation performance. The SKC-UNet + DenseCRF method was evaluated on three types of datasets containing mechanical assembly segmentation depth images. The results showed that the mean intersection over union (MIoU) of this method reached the optimum value on all the three datasets compared to other semantic segmentation networks. In summary, the proposed network is suitable for mechanical assembly segmentation tasks and can be applied to product assembly monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dw5601发布了新的文献求助10
1秒前
11完成签到,获得积分10
1秒前
耍酷糖豆完成签到,获得积分10
1秒前
李李发布了新的文献求助10
2秒前
2秒前
Diego完成签到,获得积分10
2秒前
李健应助ccerr采纳,获得10
3秒前
4秒前
隐形曼青应助酷炫的皮带采纳,获得10
4秒前
5秒前
共享精神应助xuxuxuxuxu采纳,获得10
6秒前
憨憨哈完成签到,获得积分10
6秒前
皓月完成签到,获得积分10
6秒前
成太完成签到 ,获得积分20
6秒前
wp048006完成签到,获得积分10
6秒前
zho驳回了小二郎应助
7秒前
xixi完成签到,获得积分10
8秒前
lz发布了新的文献求助10
8秒前
8秒前
youxiaotong完成签到,获得积分10
8秒前
帅哥完成签到,获得积分20
9秒前
crains发布了新的文献求助10
10秒前
潇洒海亦完成签到,获得积分10
10秒前
sy完成签到,获得积分10
10秒前
xiongqi完成签到 ,获得积分10
10秒前
Air完成签到 ,获得积分10
11秒前
Gracebing发布了新的文献求助10
11秒前
酷波er应助Wuliu采纳,获得10
11秒前
12秒前
12秒前
MG发布了新的文献求助10
12秒前
xuxuxuxuxu完成签到,获得积分10
12秒前
浅尝离白应助Matrix采纳,获得100
13秒前
14秒前
豪123456发布了新的文献求助10
15秒前
Ava应助kuka007采纳,获得10
15秒前
15秒前
XU发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648