Deep learning-based instantaneous cutting force modeling of three-axis CNC milling

过程(计算) 机械加工 计算机科学 卷积神经网络 人工智能 人工神经网络 深度学习 数控 算法 工程类 计算机视觉 机械工程 操作系统
作者
Jiejun Xie,Pengcheng Hu,Jihong Chen,Wenshuai Han,Ronghua Wang
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:246: 108153-108153 被引量:21
标识
DOI:10.1016/j.ijmecsci.2023.108153
摘要

Accurate cutting force modeling is the basis for good planning and optimization of the process and parameter of Computerized Numerical Control (CNC) milling. Traditional cutting force prediction models suffer from problems of oversimplifications on the model's input and framework, making it difficult to predict the cutting force accurately in the complex machining process. This paper proposes a novel deep learning-based instantaneous cutting force prediction model with superior modeling precision. According to the mechanism of cutting force generation, the comprehensive geometric and processing information in the machining process is creatively expressed as multi-channel digital images named Image of Comprehensive Geometric Processing Information (ICGPI). A deep learning network called Milling Force Convolutional Neural Network (MF-CNN) is then designed that takes the ICGPI as the input and the three-dimensional instantaneous cutting forces as the output. To address the challenging problem of interpretation of the deep learning network, the MF-CNN is analyzed toward the theoretical mechanistic cutting force model, validating that the proposed method can fully cover all the geometric information and mathematical operations involved in the theoretical model. Finally, some physical cutting experiments are conducted to validate the effectiveness and superiority of the proposed method, showing that our MF-CNN can predict the instantaneous cutting force with outstanding accuracy and is much superior to the three most popular benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助酷酷的山雁采纳,获得10
1秒前
陈慧钦发布了新的文献求助10
1秒前
1秒前
tiatia应助5999采纳,获得10
1秒前
3秒前
香蕉觅云应助Lee采纳,获得10
4秒前
充电宝应助研友_8Kedgn采纳,获得10
5秒前
研研发布了新的文献求助10
5秒前
汉堡包应助blueskyzhi采纳,获得10
5秒前
皮蛋完成签到,获得积分10
7秒前
7秒前
鱼贝贝完成签到 ,获得积分10
9秒前
懒洋洋完成签到 ,获得积分10
11秒前
yaxuandeng完成签到,获得积分10
12秒前
12秒前
浮游应助wocao采纳,获得10
13秒前
Lee发布了新的文献求助10
15秒前
16秒前
deeperection发布了新的文献求助10
18秒前
20秒前
丘比特应助ahfjk采纳,获得10
21秒前
youxiu完成签到 ,获得积分10
21秒前
22秒前
dolabmu完成签到 ,获得积分10
23秒前
23秒前
24秒前
jiaxiangxia完成签到 ,获得积分10
25秒前
wang发布了新的文献求助10
25秒前
26秒前
HuSP完成签到,获得积分10
28秒前
菜菜博士发布了新的文献求助10
29秒前
xiaoqi完成签到,获得积分10
29秒前
一包辣条完成签到,获得积分10
29秒前
Rong完成签到 ,获得积分10
29秒前
研友_8Kedgn发布了新的文献求助10
31秒前
应飞飞完成签到,获得积分10
31秒前
甜甜圈完成签到 ,获得积分10
31秒前
厚德载物完成签到,获得积分10
31秒前
LLL完成签到,获得积分10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429