Deep learning-based instantaneous cutting force modeling of three-axis CNC milling

过程(计算) 机械加工 计算机科学 卷积神经网络 人工智能 人工神经网络 深度学习 数控 算法 工程类 计算机视觉 机械工程 操作系统
作者
Jiejun Xie,Pengcheng Hu,Jihong Chen,Wenshuai Han,Ronghua Wang
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:246: 108153-108153 被引量:7
标识
DOI:10.1016/j.ijmecsci.2023.108153
摘要

Accurate cutting force modeling is the basis for good planning and optimization of the process and parameter of Computerized Numerical Control (CNC) milling. Traditional cutting force prediction models suffer from problems of oversimplifications on the model's input and framework, making it difficult to predict the cutting force accurately in the complex machining process. This paper proposes a novel deep learning-based instantaneous cutting force prediction model with superior modeling precision. According to the mechanism of cutting force generation, the comprehensive geometric and processing information in the machining process is creatively expressed as multi-channel digital images named Image of Comprehensive Geometric Processing Information (ICGPI). A deep learning network called Milling Force Convolutional Neural Network (MF-CNN) is then designed that takes the ICGPI as the input and the three-dimensional instantaneous cutting forces as the output. To address the challenging problem of interpretation of the deep learning network, the MF-CNN is analyzed toward the theoretical mechanistic cutting force model, validating that the proposed method can fully cover all the geometric information and mathematical operations involved in the theoretical model. Finally, some physical cutting experiments are conducted to validate the effectiveness and superiority of the proposed method, showing that our MF-CNN can predict the instantaneous cutting force with outstanding accuracy and is much superior to the three most popular benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助tom采纳,获得10
刚刚
小枣发布了新的文献求助10
4秒前
5秒前
情怀应助活力的若风采纳,获得10
5秒前
平常荷花完成签到 ,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
CodeCraft应助快乐小汉堡采纳,获得10
8秒前
8秒前
wanci应助陆靖易采纳,获得10
8秒前
张钰清发布了新的文献求助10
8秒前
思源应助gilderf采纳,获得10
8秒前
丘比特应助pragmatic采纳,获得10
9秒前
一只冬瓜zZ完成签到 ,获得积分10
10秒前
璨澄发布了新的文献求助10
11秒前
赵赵完成签到,获得积分10
11秒前
上官若男应助体贴绮露采纳,获得10
12秒前
在水一方应助ker采纳,获得10
13秒前
14秒前
小乌云完成签到,获得积分10
14秒前
赵赵发布了新的文献求助10
14秒前
16秒前
Lucky发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
江野发布了新的文献求助10
19秒前
俏皮的白柏完成签到,获得积分10
19秒前
CipherSage应助小张采纳,获得10
19秒前
壮观的擎发布了新的文献求助10
21秒前
22秒前
mini完成签到,获得积分10
22秒前
爱科研cg发布了新的文献求助20
22秒前
tsunami完成签到,获得积分20
23秒前
李爱国应助牛牛牛采纳,获得10
23秒前
23秒前
23秒前
25秒前
25秒前
Steven发布了新的文献求助10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979896
求助须知:如何正确求助?哪些是违规求助? 3523949
关于积分的说明 11219166
捐赠科研通 3261387
什么是DOI,文献DOI怎么找? 1800629
邀请新用户注册赠送积分活动 879209
科研通“疑难数据库(出版商)”最低求助积分说明 807202