Spatially-resolved bending recognition based on a learning-empowered fiber specklegram sensor

计算机科学 稳健性(进化) 曲率 人工智能 深度学习 斑点图案 解调 模式识别(心理学) 计算机视觉 光学 物理 数学 电信 基因 生物化学 频道(广播) 化学 几何学
作者
Han Gao,Haifeng Hu
出处
期刊:Optics Express [The Optical Society]
卷期号:31 (5): 7671-7671 被引量:14
标识
DOI:10.1364/oe.482953
摘要

Fiber specklegram sensors do not rely on complex fabrication processes and expensive sensor interrogation schemes and provide an alternative to routinely used fiber sensing technologies. Most of the reported specklegram demodulation schemes focus on correlation calculation based on statistical properties or classification according to features, resulting in limited measurement range and resolution. In this work, we propose and demonstrate a learning-empowered spatially resolved method for fiber specklegram bending sensors. This method can learn the evolution process of speckle patterns through a hybrid framework constructed by a data dimension reduction algorithm and regression neural network, which can simultaneously identify the curvature and perturbed position according to the specklegram, even for the unlearned curvature configuration. Rigorous experiments are performed to verify the feasibility and robustness of the proposed scheme, and the results show that the prediction accuracy for the perturbed position is 100%, and the average prediction errors for the curvature of the learned and unlearned configurations are 7.79 × 10 −4 m -1 and 7.02 × 10 −2 m -1 , respectively. The proposed method promotes the application of fiber specklegram sensors in the practical scene and provides insights for the interrogation of sensing signals by deep learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
0009987完成签到,获得积分10
1秒前
1秒前
ding应助月不笑采纳,获得10
1秒前
suohaiyun发布了新的文献求助10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
小宋发布了新的文献求助10
2秒前
大个应助科研通管家采纳,获得30
2秒前
吃人陈发布了新的文献求助10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
liuchengrui应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
kagaminelen完成签到,获得积分10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
mengtingmei应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
xdd完成签到,获得积分10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
3秒前
卤味狮子头完成签到,获得积分10
3秒前
田様应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791