3D Medical image segmentation using parallel transformers

计算机科学 变压器 人工智能 分割 编码器 卷积神经网络 图像分割 模式识别(心理学) 深度学习 计算机视觉 工程类 电压 电气工程 操作系统
作者
Qingsen Yan,Shengqiang Liu,Songhua Xu,Caixia Dong,Zongfang Li,Qinfeng Shi,Yanning Zhang,Duwei Dai
出处
期刊:Pattern Recognition [Elsevier]
卷期号:138: 109432-109432 被引量:38
标识
DOI:10.1016/j.patcog.2023.109432
摘要

Most recent 3D medical image segmentation methods adopt convolutional neural networks (CNNs) that rely on deep feature representation and achieve adequate performance. However, due to the convolutional architectures having limited receptive fields, they cannot explicitly model the long-range dependencies in the medical image. Recently, Transformer can benefit from global dependencies using self-attention mechanisms and learn highly expressive representations. Some works were designed based on the Transformers, but the existing Transformers suffer from extreme computational and memories, and they cannot take full advantage of the powerful feature representations in 3D medical image segmentation. In this paper, we aim to connect the different resolution streams in parallel and propose a novel network, named Transformer based High Resolution Network (TransHRNet), with an Effective Transformer (EffTrans) block, which has sufficient feature representation even at high feature resolutions. Given a 3D image, the encoder first utilizes CNN to extract the feature representations to capture the local information, and then the different feature maps are reshaped elaborately for tokens that are fed into each Transformer stream in parallel to learn the global information and repeatedly exchange the information across streams. Unfortunately, the proposed framework based on the standard Transformer needs a huge amount of computation, thus we introduce a deep and effective Transformer to deliver better performance with fewer parameters. The proposed TransHRNet is evaluated on the Multi-Atlas Labeling Beyond the Cranial Vault (BCV) dataset that consists of 11 major human organs and the Medical Segmentation Decathlon (MSD) dataset for brain tumor and spleen segmentation tasks. Experimental results show that it performs better than the convolutional and other related Transformer-based methods on the 3D multi-organ segmentation tasks. Code is available at https://github.com/duweidai/TransHRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
忐忑的翠彤完成签到 ,获得积分10
2秒前
必胜客发布了新的文献求助10
2秒前
2秒前
4秒前
YYL完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
去为我我发布了新的文献求助10
6秒前
asdfqwer应助晓晓来了采纳,获得10
6秒前
科研通AI2S应助晓晓来了采纳,获得10
6秒前
科研通AI2S应助晓晓来了采纳,获得10
6秒前
科研通AI2S应助晓晓来了采纳,获得10
6秒前
高大怀梦发布了新的文献求助10
7秒前
洁面乳发布了新的文献求助10
8秒前
自由代亦发布了新的文献求助10
8秒前
9秒前
琳琳发布了新的文献求助10
9秒前
9秒前
杭璎发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
陶醉凝蝶关注了科研通微信公众号
11秒前
Cathy完成签到,获得积分10
12秒前
三三完成签到 ,获得积分10
12秒前
烟花应助流星雨采纳,获得10
12秒前
13秒前
14秒前
Xwu发布了新的文献求助10
14秒前
Alice完成签到 ,获得积分10
15秒前
16秒前
17秒前
lebron完成签到,获得积分10
17秒前
李健应助zhmoon采纳,获得30
17秒前
雪白靖完成签到,获得积分10
17秒前
17秒前
fd163c完成签到 ,获得积分10
19秒前
边瑞明发布了新的文献求助10
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124949
求助须知:如何正确求助?哪些是违规求助? 2775300
关于积分的说明 7726177
捐赠科研通 2430793
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600328