3D Medical image segmentation using parallel transformers

计算机科学 变压器 人工智能 分割 编码器 卷积神经网络 图像分割 模式识别(心理学) 深度学习 计算机视觉 工程类 操作系统 电气工程 电压
作者
Qingsen Yan,Shengqiang Liu,Songhua Xu,Caixia Dong,Zongfang Li,Qinfeng Shi,Yanning Zhang,Duwei Dai
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:138: 109432-109432 被引量:58
标识
DOI:10.1016/j.patcog.2023.109432
摘要

Most recent 3D medical image segmentation methods adopt convolutional neural networks (CNNs) that rely on deep feature representation and achieve adequate performance. However, due to the convolutional architectures having limited receptive fields, they cannot explicitly model the long-range dependencies in the medical image. Recently, Transformer can benefit from global dependencies using self-attention mechanisms and learn highly expressive representations. Some works were designed based on the Transformers, but the existing Transformers suffer from extreme computational and memories, and they cannot take full advantage of the powerful feature representations in 3D medical image segmentation. In this paper, we aim to connect the different resolution streams in parallel and propose a novel network, named Transformer based High Resolution Network (TransHRNet), with an Effective Transformer (EffTrans) block, which has sufficient feature representation even at high feature resolutions. Given a 3D image, the encoder first utilizes CNN to extract the feature representations to capture the local information, and then the different feature maps are reshaped elaborately for tokens that are fed into each Transformer stream in parallel to learn the global information and repeatedly exchange the information across streams. Unfortunately, the proposed framework based on the standard Transformer needs a huge amount of computation, thus we introduce a deep and effective Transformer to deliver better performance with fewer parameters. The proposed TransHRNet is evaluated on the Multi-Atlas Labeling Beyond the Cranial Vault (BCV) dataset that consists of 11 major human organs and the Medical Segmentation Decathlon (MSD) dataset for brain tumor and spleen segmentation tasks. Experimental results show that it performs better than the convolutional and other related Transformer-based methods on the 3D multi-organ segmentation tasks. Code is available at https://github.com/duweidai/TransHRNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ahh完成签到 ,获得积分10
1秒前
辛勤安梦完成签到,获得积分10
2秒前
Akjan完成签到,获得积分10
5秒前
查查make完成签到,获得积分10
9秒前
Jasper应助大橙子采纳,获得10
10秒前
GUO发布了新的文献求助30
11秒前
三石完成签到 ,获得积分10
11秒前
跳跃的白云完成签到 ,获得积分10
12秒前
酷酷亦寒完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
Blaseaka完成签到 ,获得积分10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
17秒前
汉堡包应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得30
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
沉静的浩然完成签到,获得积分10
19秒前
开朗的绮山完成签到,获得积分10
19秒前
19秒前
老迟到的土豆完成签到 ,获得积分10
22秒前
单薄的日记本完成签到,获得积分10
22秒前
大橙子发布了新的文献求助10
23秒前
舒适的天奇完成签到 ,获得积分10
24秒前
25秒前
27秒前
都是小儿卡通书完成签到,获得积分10
28秒前
29秒前
陶醉的又夏完成签到 ,获得积分10
29秒前
lily完成签到 ,获得积分10
32秒前
33秒前
子苓完成签到 ,获得积分10
35秒前
Jun完成签到 ,获得积分10
35秒前
phil完成签到,获得积分10
36秒前
祁乐安发布了新的文献求助20
36秒前
如初完成签到,获得积分10
37秒前
zzuwxj完成签到,获得积分10
40秒前
糊涂的语兰完成签到,获得积分10
44秒前
多余完成签到,获得积分10
45秒前
喝酸奶不舔盖完成签到 ,获得积分10
45秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022