3D Medical image segmentation using parallel transformers

计算机科学 变压器 人工智能 分割 编码器 卷积神经网络 图像分割 模式识别(心理学) 深度学习 计算机视觉 工程类 操作系统 电气工程 电压
作者
Qingsen Yan,Shengqiang Liu,Songhua Xu,Caixia Dong,Zongfang Li,Qinfeng Shi,Yanning Zhang,Duwei Dai
出处
期刊:Pattern Recognition [Elsevier]
卷期号:138: 109432-109432 被引量:58
标识
DOI:10.1016/j.patcog.2023.109432
摘要

Most recent 3D medical image segmentation methods adopt convolutional neural networks (CNNs) that rely on deep feature representation and achieve adequate performance. However, due to the convolutional architectures having limited receptive fields, they cannot explicitly model the long-range dependencies in the medical image. Recently, Transformer can benefit from global dependencies using self-attention mechanisms and learn highly expressive representations. Some works were designed based on the Transformers, but the existing Transformers suffer from extreme computational and memories, and they cannot take full advantage of the powerful feature representations in 3D medical image segmentation. In this paper, we aim to connect the different resolution streams in parallel and propose a novel network, named Transformer based High Resolution Network (TransHRNet), with an Effective Transformer (EffTrans) block, which has sufficient feature representation even at high feature resolutions. Given a 3D image, the encoder first utilizes CNN to extract the feature representations to capture the local information, and then the different feature maps are reshaped elaborately for tokens that are fed into each Transformer stream in parallel to learn the global information and repeatedly exchange the information across streams. Unfortunately, the proposed framework based on the standard Transformer needs a huge amount of computation, thus we introduce a deep and effective Transformer to deliver better performance with fewer parameters. The proposed TransHRNet is evaluated on the Multi-Atlas Labeling Beyond the Cranial Vault (BCV) dataset that consists of 11 major human organs and the Medical Segmentation Decathlon (MSD) dataset for brain tumor and spleen segmentation tasks. Experimental results show that it performs better than the convolutional and other related Transformer-based methods on the 3D multi-organ segmentation tasks. Code is available at https://github.com/duweidai/TransHRNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欣慰的夏彤给李嶍烨的求助进行了留言
刚刚
英俊的铭应助尔东采纳,获得10
刚刚
顾矜应助2hi采纳,获得10
1秒前
1秒前
邓巧完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI6.1应助Ice_zhao采纳,获得10
2秒前
2秒前
HH发布了新的文献求助10
2秒前
GIGGLE完成签到,获得积分20
2秒前
客厅狂欢完成签到,获得积分10
3秒前
zhang7jing发布了新的文献求助30
3秒前
田様应助坦率导师sw采纳,获得10
4秒前
Z先生发布了新的文献求助10
4秒前
英姑应助潇洒闭月采纳,获得10
6秒前
无花果应助lihailong采纳,获得10
6秒前
李佳笑完成签到,获得积分10
6秒前
小白加油发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
smottom应助LLJ采纳,获得10
9秒前
9秒前
likun_42完成签到,获得积分10
10秒前
10秒前
丘比特应助发sci的女人采纳,获得10
10秒前
上山打老虎完成签到,获得积分10
10秒前
小郭完成签到,获得积分10
11秒前
积极慕晴完成签到,获得积分10
12秒前
HH完成签到,获得积分20
13秒前
13秒前
13秒前
我是老大应助滴滴滴采纳,获得10
14秒前
leo0531完成签到 ,获得积分10
14秒前
杨文志发布了新的文献求助10
14秒前
ljy1111完成签到,获得积分10
14秒前
情怀应助Z1xq2K采纳,获得10
15秒前
Cyuan完成签到,获得积分10
15秒前
酷波er应助js采纳,获得10
16秒前
儒飞完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082