Reliable composite fault diagnosis of hydraulic systems based on linear discriminant analysis and multi-output hybrid kernel extreme learning machine

线性判别分析 核(代数) 人工智能 极限学习机 模式识别(心理学) 组分(热力学) 水力机械 可靠性(半导体) 断层(地质) 故障检测与隔离 计算机科学 机器学习 可靠性工程 数据挖掘 工程类 数学 人工神经网络 地质学 物理 组合数学 热力学 功率(物理) 地震学 机械工程 执行机构 量子力学
作者
Jie Liu,Huoyao Xu,Xiangyu Peng,Junlang Wang,Chaoming He
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:234: 109178-109178 被引量:22
标识
DOI:10.1016/j.ress.2023.109178
摘要

With increasingly stringent in requirements on the reliability and safety of hydraulic systems, data-driven fault diagnosis has emerged as a popular area of research. Hydraulic systems may have multiple failure modes, and accurately diagnosing compound failures in multi-component systems is a daunting task. In this paper, a method of multi-output classification by combining linear discriminant analysis (LDA) with the hybrid kernel extreme learning machine (HKELM) is proposed to diagnose compound faults in hydraulic systems. Data selection based on LDA is used in place of expert knowledge to screen out sensitive channels of each component from multi-channel signals. The multi-output strategy is embedded into the HKELM, which can simultaneously output the fault status of multiple components to diagnose the health of the system. An improved Hamming loss is also proposed to evaluate the total error in the multi-output classification because it has greater applicative relevance than classification accuracy. The results of experiments show that the proposed method can diagnose composite faults in multi-component systems with an accuracy higher than 99.5% and an error of only 0.20% on a dataset of hydraulic systems. As a shallow feed-forward network model, it can be used for real-time fault diagnosis due to its efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
xuanzhezhou完成签到,获得积分10
1秒前
卷卷更快乐完成签到 ,获得积分10
2秒前
李健应助deway采纳,获得10
2秒前
seven发布了新的文献求助20
2秒前
5秒前
6秒前
xuanzhezhou发布了新的文献求助10
7秒前
友好雅山完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
脑洞疼应助TQ采纳,获得10
9秒前
9秒前
乐乐应助哦啦啦采纳,获得10
9秒前
何佳丽完成签到,获得积分10
9秒前
希望天下0贩的0应助余欢采纳,获得10
10秒前
10秒前
11秒前
木悠完成签到,获得积分10
11秒前
充电宝应助过奖啦采纳,获得10
11秒前
千寻完成签到,获得积分0
12秒前
12秒前
优雅山柏发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
13秒前
Cici完成签到 ,获得积分10
14秒前
高兴的翠曼完成签到,获得积分10
14秒前
14秒前
14秒前
年轻的迎南完成签到,获得积分10
14秒前
14秒前
JamesPei应助林子青采纳,获得10
15秒前
风趣小蜜蜂完成签到 ,获得积分10
15秒前
曾绍炜完成签到,获得积分20
15秒前
16秒前
lczy发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074163
求助须知:如何正确求助?哪些是违规求助? 4294315
关于积分的说明 13380837
捐赠科研通 4115699
什么是DOI,文献DOI怎么找? 2253823
邀请新用户注册赠送积分活动 1258466
关于科研通互助平台的介绍 1191322