A two‐step spatially explicit optimization approach of integrating ecosystem services (ES) into land use planning (LUP) to generate the optimally sustainable schemes

生态系统服务 供应 徐州 最大化 计算机科学 嵌入 土地利用 数学优化 环境资源管理 环境经济学 生态学 环境科学 生态系统 数学 经济 生物 电信 人工智能
作者
Xin Li,Huimin Xu,Xiaoyan Ma,Ying Huang
出处
期刊:Land Degradation & Development [Wiley]
卷期号:34 (9): 2508-2522 被引量:3
标识
DOI:10.1002/ldr.4624
摘要

Abstract Xuzhou, as an industrial centre and typical resource‐based city in China, is facing serious pressure on development transformation. The embedding of ecosystem services (ES) into land use planning (LUP) is of great significance to realize the coupling of ecology and society. This paper proposed a two‐step spatially explicit optimization approach of integrating ES into LUP, with consideration of macro‐requirements, spatial heterogeneity, and the spatially explicit basis. The first step was to construct a linear optimization model to obtain the land quantity structure corresponding to the maximized ES value. The second step was to spatially allocate land use structure to maximize the suitability of spatial units providing ES. The results showed that the land use structure corresponding to the maximization ES value of Xuzhou was obtained to satisfy the welfare of habitant and to create the ecological competitiveness. The optimal spatial layout of Xuzhou with maximum spatial suitability of providing ES was acquired through spatial optimization of this approach. ES was matched to the units with the high spatial suitability, and the spatial potential of ES was released. The conflicts among supporting services, provisioning services, regulating services, and cultural services were well managed with the equipment of multi‐objective trade‐off technology. The proposed ES embedding approach has good performance in the optimal allocation of land resources for ES maximization and in managing trade‐offs during multi‐objectives programming. Therefore, it is expected to be widely used for ES‐oriented LUP formulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜洋洋完成签到 ,获得积分10
刚刚
上官若男应助轻吟采纳,获得20
3秒前
3秒前
迷人耗子精完成签到,获得积分10
4秒前
情怀应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
小李熊猫应助科研通管家采纳,获得10
5秒前
加菲丰丰应助科研通管家采纳,获得20
5秒前
Ava应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得30
5秒前
完美耦合发布了新的文献求助10
5秒前
5秒前
Summeryz920完成签到,获得积分10
7秒前
jiuyuan发布了新的文献求助10
7秒前
lxh完成签到,获得积分10
8秒前
CodeCraft应助正直的语琴采纳,获得10
8秒前
9秒前
abc123完成签到,获得积分10
9秒前
12秒前
园艺小学生完成签到,获得积分10
12秒前
小蘑菇应助卓儿采纳,获得10
12秒前
13秒前
13秒前
子车茗应助泡面采纳,获得10
14秒前
希望天下0贩的0应助啊懂采纳,获得10
14秒前
15秒前
研友_Zlem38发布了新的文献求助30
15秒前
16秒前
17秒前
17秒前
田様应助mmmmm采纳,获得10
18秒前
守墓人完成签到 ,获得积分10
18秒前
Paul发布了新的文献求助10
20秒前
陶醉觅夏发布了新的文献求助10
20秒前
21秒前
芒果与鱼发布了新的文献求助10
21秒前
Chestnut发布了新的文献求助10
21秒前
卡卡应助sjc采纳,获得10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149493
求助须知:如何正确求助?哪些是违规求助? 2800565
关于积分的说明 7840531
捐赠科研通 2458065
什么是DOI,文献DOI怎么找? 1308242
科研通“疑难数据库(出版商)”最低求助积分说明 628460
版权声明 601706