A two‐step spatially explicit optimization approach of integrating ecosystem services (ES) into land use planning (LUP) to generate the optimally sustainable schemes

生态系统服务 供应 徐州 最大化 计算机科学 嵌入 土地利用 数学优化 环境资源管理 环境经济学 生态学 环境科学 生态系统 数学 经济 生物 电信 人工智能
作者
Xin Li,Haibin Xu,Xiaodong Ma,Ying Huang
出处
期刊:Land Degradation & Development [Wiley]
卷期号:34 (9): 2508-2522 被引量:4
标识
DOI:10.1002/ldr.4624
摘要

Abstract Xuzhou, as an industrial centre and typical resource‐based city in China, is facing serious pressure on development transformation. The embedding of ecosystem services (ES) into land use planning (LUP) is of great significance to realize the coupling of ecology and society. This paper proposed a two‐step spatially explicit optimization approach of integrating ES into LUP, with consideration of macro‐requirements, spatial heterogeneity, and the spatially explicit basis. The first step was to construct a linear optimization model to obtain the land quantity structure corresponding to the maximized ES value. The second step was to spatially allocate land use structure to maximize the suitability of spatial units providing ES. The results showed that the land use structure corresponding to the maximization ES value of Xuzhou was obtained to satisfy the welfare of habitant and to create the ecological competitiveness. The optimal spatial layout of Xuzhou with maximum spatial suitability of providing ES was acquired through spatial optimization of this approach. ES was matched to the units with the high spatial suitability, and the spatial potential of ES was released. The conflicts among supporting services, provisioning services, regulating services, and cultural services were well managed with the equipment of multi‐objective trade‐off technology. The proposed ES embedding approach has good performance in the optimal allocation of land resources for ES maximization and in managing trade‐offs during multi‐objectives programming. Therefore, it is expected to be widely used for ES‐oriented LUP formulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助卷卷采纳,获得30
1秒前
3秒前
孙二二发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
lljken发布了新的文献求助10
6秒前
6秒前
佳AOAOAO发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助ABC采纳,获得10
8秒前
9秒前
xiaoting完成签到,获得积分20
9秒前
cfplhys发布了新的文献求助10
10秒前
歇儿哒哒完成签到,获得积分10
10秒前
研友_VZG7GZ应助lv采纳,获得10
10秒前
hb发布了新的文献求助10
12秒前
12秒前
九头鬼方发布了新的文献求助30
13秒前
科研通AI2S应助风华正茂采纳,获得10
14秒前
zqz发布了新的文献求助10
15秒前
16秒前
SciGPT应助踏雪飞鸿采纳,获得10
16秒前
Liiw完成签到,获得积分10
16秒前
大个应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI5应助lljken采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得50
18秒前
山花浪漫应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得150
19秒前
田様应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901