Identify influential nodes in social networks with graph multi-head attention regression model

计算机科学 任务(项目管理) 图形 回归 注意力网络 骨料(复合) 二元分类 基线(sea) 人工神经网络 人工智能 数据挖掘 机器学习 理论计算机科学 数学 统计 支持向量机 海洋学 地质学 复合材料 经济 管理 材料科学
作者
Jiangheng Kou,Peng Jia,Jiayong Liu,Jinqiao Dai,Hairu Luo
出处
期刊:Neurocomputing [Elsevier]
卷期号:530: 23-36 被引量:14
标识
DOI:10.1016/j.neucom.2023.01.078
摘要

Identifying influential nodes in social networks is a fundamental task. Due to the development of Graph Neural Networks, Graph Convolution Network (GCN) based model has been introduced to solve this problem. Compared to traditional methods, the existing GCN-based models are more accurate in identifying influential nodes because they can better aggregate the multi-dimension features. However, the GCN-based method treats this problem as a binary classification task rather than a regression task, making it less practical. To make the GCN-based model more practical, we treat identifying influential nodes as a regression task. Moreover, when aggregating neighbor features, GCN ignores the difference in neighbor importance, which will affect the prediction performance of the GCN-based models. This paper proposes a graph multi-head attention regression model to address these problems. Vast experiments on twelve real-world social networks demonstrate that the proposed model significantly outperforms baseline methods. To the best of our knowledge, this is the first work to introduce the multi-head attention mechanism to identify influential nodes in social networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
高贵觅风发布了新的文献求助30
1秒前
1秒前
水果完成签到,获得积分10
2秒前
化学小学生给化学小学生的求助进行了留言
2秒前
郁金香发布了新的文献求助10
3秒前
小如要努力完成签到,获得积分10
4秒前
汪宇发布了新的文献求助10
4秒前
CipherSage应助畅快的冷安采纳,获得10
4秒前
5秒前
小古完成签到,获得积分10
5秒前
dlwlrma发布了新的文献求助10
6秒前
Renaissance完成签到 ,获得积分10
6秒前
6秒前
辣椒完成签到 ,获得积分10
6秒前
无心的小霸王完成签到 ,获得积分10
6秒前
yjy123发布了新的文献求助10
7秒前
MrWang完成签到,获得积分10
8秒前
chenzhi发布了新的文献求助10
9秒前
BowieHuang应助LONGzhi采纳,获得10
10秒前
10秒前
赵一完成签到,获得积分10
10秒前
科研通AI6.1应助通~采纳,获得10
10秒前
赘婿应助XylonYu采纳,获得10
11秒前
12秒前
天天快乐应助Mcarry采纳,获得10
14秒前
齐小齐完成签到,获得积分10
14秒前
糖醋里脊加醋完成签到,获得积分10
14秒前
懦弱的易绿完成签到,获得积分10
15秒前
烟花应助chenzhi采纳,获得10
15秒前
xuan给xuan的求助进行了留言
15秒前
kdfdds发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
Owen应助陈龙采纳,获得10
19秒前
19秒前
20秒前
Owen应助优秀采纳,获得10
22秒前
Catherine发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741705
求助须知:如何正确求助?哪些是违规求助? 5403758
关于积分的说明 15343201
捐赠科研通 4883272
什么是DOI,文献DOI怎么找? 2624986
邀请新用户注册赠送积分活动 1573801
关于科研通互助平台的介绍 1530722