Using a variety of machine learning approaches to predict and map topsoil pH of arable land on a regional scale

表土 耕地 克里金 土壤水分 环境科学 土壤科学 线性回归 人工神经网络 随机森林 支持向量机 机器学习 计算机科学 生态学 农业 生物
作者
Yueqi Sun,Xiaomei Sun,Zhenfu Wu,Junying Yan,Chongyang Ma,Jingyi Zhang,Yanfeng Zhao,Jie Chen
出处
期刊:Soil Science Society of America Journal [Wiley]
卷期号:87 (3): 613-630 被引量:1
标识
DOI:10.1002/saj2.20525
摘要

Abstract In order to accurately predict soil properties, various machine learning (ML) approaches and hybrid models constructed by integrating ML into regression kriging framework were used to predict and map arable land topsoil pH in Henan province, central China. Random forest (RF), cubist (Cu), support vector machine, artificial neural network, multiple linear regression, classification and regression trees (CART) and their hybrid models were compared for pH accuracy prediction. Among all standalone ML models, RF had the best predictive performance, in terms of the metrics employed in this study, followed by Cu, and CART was the worst. Compared with their ML counterparts, hybrid models could improve the accuracy of topsoil pH prediction to various extents. The accuracy improvement of the hybrid models constructed based on the simple ML was much greater than that based on the complex ensemble ML. Except for artificial neural network kriging , there was no significant difference between different hybrid models in the predicted results of topsoil pH. The outputs from the best predictive models showed that weak acidic soils and weak alkaline soils were the dominant arable soils in the study region, accounting for more than 30% and more than 50% of the total arable land area respectively, the topsoil pH of arable land in the north of the study area is generally higher than that in the south. Boruta variable selection revealed that altitude, climatic covariates closely related to soil moisture availability and some soil properties were the most critical factors affecting and controlling the topsoil pH of arable land.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山水有佳音关注了科研通微信公众号
刚刚
熊风完成签到,获得积分10
1秒前
vicky完成签到 ,获得积分10
2秒前
素歌完成签到,获得积分10
2秒前
轻松的冰淇淋完成签到,获得积分10
2秒前
bubble完成签到,获得积分10
2秒前
朴实涵山完成签到 ,获得积分10
3秒前
3秒前
QQ不需要昵称完成签到,获得积分10
3秒前
吃葡萄不吐胡萝卜皮完成签到 ,获得积分10
3秒前
研友_VZG7GZ应助快乐枫采纳,获得10
4秒前
hahaha完成签到,获得积分10
4秒前
熊风发布了新的文献求助10
4秒前
愉快数据线完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
杨lan完成签到 ,获得积分10
7秒前
义气丹雪应助临河盗龙采纳,获得50
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
陶醉清完成签到,获得积分10
9秒前
万花谷完成签到,获得积分10
9秒前
9秒前
洛大大完成签到,获得积分10
10秒前
雪飞杨完成签到 ,获得积分10
10秒前
yxl01yxl完成签到,获得积分0
11秒前
喜悦丹亦完成签到,获得积分10
11秒前
betty完成签到 ,获得积分10
12秒前
Larry1226完成签到,获得积分10
13秒前
典雅的纸飞机完成签到 ,获得积分10
13秒前
时尚的白柏完成签到,获得积分10
13秒前
13秒前
Archer完成签到,获得积分10
14秒前
jimmy发布了新的文献求助10
14秒前
jiu完成签到,获得积分10
15秒前
Novice6354完成签到 ,获得积分10
15秒前
无欲无求傻傻完成签到,获得积分10
16秒前
深情安青应助shuangcheng采纳,获得10
16秒前
cissie完成签到 ,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715953
求助须知:如何正确求助?哪些是违规求助? 5238068
关于积分的说明 15275785
捐赠科研通 4866532
什么是DOI,文献DOI怎么找? 2613031
邀请新用户注册赠送积分活动 1563138
关于科研通互助平台的介绍 1520694