Using a variety of machine learning approaches to predict and map topsoil pH of arable land on a regional scale

表土 耕地 克里金 土壤水分 环境科学 土壤科学 线性回归 人工神经网络 随机森林 支持向量机 机器学习 计算机科学 生态学 农业 生物
作者
Yueqi Sun,Xiaomei Sun,Zhenfu Wu,Junying Yan,Chongyang Ma,Jingyi Zhang,Yanfeng Zhao,Jie Chen
出处
期刊:Soil Science Society of America Journal [Wiley]
卷期号:87 (3): 613-630 被引量:1
标识
DOI:10.1002/saj2.20525
摘要

Abstract In order to accurately predict soil properties, various machine learning (ML) approaches and hybrid models constructed by integrating ML into regression kriging framework were used to predict and map arable land topsoil pH in Henan province, central China. Random forest (RF), cubist (Cu), support vector machine, artificial neural network, multiple linear regression, classification and regression trees (CART) and their hybrid models were compared for pH accuracy prediction. Among all standalone ML models, RF had the best predictive performance, in terms of the metrics employed in this study, followed by Cu, and CART was the worst. Compared with their ML counterparts, hybrid models could improve the accuracy of topsoil pH prediction to various extents. The accuracy improvement of the hybrid models constructed based on the simple ML was much greater than that based on the complex ensemble ML. Except for artificial neural network kriging , there was no significant difference between different hybrid models in the predicted results of topsoil pH. The outputs from the best predictive models showed that weak acidic soils and weak alkaline soils were the dominant arable soils in the study region, accounting for more than 30% and more than 50% of the total arable land area respectively, the topsoil pH of arable land in the north of the study area is generally higher than that in the south. Boruta variable selection revealed that altitude, climatic covariates closely related to soil moisture availability and some soil properties were the most critical factors affecting and controlling the topsoil pH of arable land.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助卡皮巴拉采纳,获得10
3秒前
echo发布了新的文献求助10
3秒前
4秒前
科研助手6应助娜写年华采纳,获得10
4秒前
中和皇极应助wu采纳,获得10
5秒前
5秒前
小朱发布了新的文献求助10
6秒前
zsx关闭了zsx文献求助
8秒前
焦糖拿铁发布了新的文献求助10
9秒前
10秒前
乐乐应助Mine采纳,获得30
11秒前
echo完成签到,获得积分20
11秒前
sakualua完成签到,获得积分10
11秒前
YamDaamCaa应助小朱采纳,获得30
14秒前
卡皮巴拉发布了新的文献求助10
15秒前
Lucky完成签到 ,获得积分10
20秒前
萄哥布鸽完成签到,获得积分10
20秒前
卡皮巴拉完成签到,获得积分10
22秒前
逗荼消新卜桐完成签到 ,获得积分10
22秒前
22秒前
1111应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
Owen应助科研通管家采纳,获得10
23秒前
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
真实的熊猫完成签到 ,获得积分20
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
ED应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
CipherSage应助思维隋采纳,获得10
24秒前
小朱完成签到,获得积分20
25秒前
28秒前
英姑应助幼汁汁鬼鬼采纳,获得30
28秒前
xy完成签到 ,获得积分10
30秒前
31秒前
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993371
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264545
捐赠科研通 3273794
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652