Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks

计算机科学 图形 卷积神经网络 节点(物理) 理论计算机科学 透视图(图形) GSM演进的增强数据速率 算法 人工智能 物理 量子力学
作者
Yujun Yan,Milad Hashemi,Kevin Swersky,Yaoqing Yang,Danai Koutra
标识
DOI:10.1109/icdm54844.2022.00169
摘要

In node classification tasks, graph convolutional neural networks (GCNs) have demonstrated competitive performance over traditional methods on diverse graph data. However, it is known that the performance of GCNs degrades with increasing number of layers (oversmoothing problem) and recent studies have also shown that GCNs may perform worse in heterophilous graphs, where neighboring nodes tend to belong to different classes (heterophily problem). These two problems are usually viewed as unrelated, and thus are studied independently, often at the graph filter level from a spectral perspective.We are the first to take a unified perspective to jointly explain the oversmoothing and heterophily problems at the node level. Specifically, we profile the nodes via two quantitative metrics: the relative degree of a node (compared to its neighbors) and the node-level heterophily. Our theory shows that the interplay of these two profiling metrics defines three cases of node behaviors, which explain the oversmoothing and heterophily problems jointly and can predict the performance of GCNs. Based on insights from our theory, we show theoretically and empirically the effectiveness of two strategies: structure-based edge correction, which learns corrected edge weights from structural properties (i.e., degrees), and feature-based edge correction, which learns signed edge weights from node features. Compared to other approaches, which tend to handle well either heterophily or oversmoothing, we show that our model, GGCN, which incorporates the two strategies performs well in both problems. We provide a longer version of this paper in [1] and codes on https://github.com/YujunYan/Heterophily_and_oversmoothing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿布与小佛完成签到 ,获得积分10
刚刚
Sunflower完成签到 ,获得积分10
刚刚
细心大碗完成签到,获得积分10
刚刚
火星上芹菜完成签到,获得积分10
刚刚
yaooo发布了新的文献求助10
刚刚
BetterH完成签到 ,获得积分10
刚刚
极光完成签到,获得积分10
刚刚
Foxjker完成签到 ,获得积分10
刚刚
英俊的铭应助六日爱科研采纳,获得10
1秒前
1秒前
NexusExplorer应助前行的灿采纳,获得10
1秒前
1秒前
任白993发布了新的文献求助10
1秒前
tianxiangning发布了新的文献求助10
2秒前
凌云完成签到,获得积分10
2秒前
正好发布了新的文献求助10
2秒前
guozizi发布了新的文献求助10
2秒前
小学猹完成签到,获得积分10
2秒前
五五完成签到,获得积分10
2秒前
3秒前
3秒前
琳宝贝发布了新的文献求助10
3秒前
Joff_W完成签到,获得积分10
3秒前
缥缈白翠完成签到,获得积分10
3秒前
伶俐的紫蓝完成签到,获得积分10
4秒前
bingsu108完成签到,获得积分10
4秒前
mawenxing完成签到,获得积分10
4秒前
无限翅膀完成签到,获得积分10
5秒前
一年5篇发布了新的文献求助10
5秒前
张大大完成签到,获得积分10
5秒前
sx完成签到 ,获得积分10
5秒前
12完成签到,获得积分10
5秒前
xx发布了新的文献求助10
6秒前
积极纲完成签到,获得积分20
6秒前
lllllsy发布了新的文献求助10
6秒前
烂漫的金针菇完成签到,获得积分10
6秒前
圈圈完成签到 ,获得积分10
6秒前
韩夏菲发布了新的文献求助10
7秒前
wushengdeyu完成签到 ,获得积分10
7秒前
趙途嘵生完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568425
求助须知:如何正确求助?哪些是违规求助? 4653025
关于积分的说明 14703215
捐赠科研通 4594849
什么是DOI,文献DOI怎么找? 2521311
邀请新用户注册赠送积分活动 1492962
关于科研通互助平台的介绍 1463778