CT-derived radiomic analysis for predicting the survival rate of patients with non-small cell lung cancer receiving radiotherapy

放射基因组学 肺癌 放射治疗 医学 接收机工作特性 列线图 一致性 生存分析 肿瘤科 无线电技术 放射科 内科学
作者
Nannan Zhang,Xinxin Zhang,Junheng Li,Jie Ren,Luyang Li,Wenlei Dong,Yixin Liu
出处
期刊:Physica Medica [Elsevier]
卷期号:107: 102546-102546 被引量:1
标识
DOI:10.1016/j.ejmp.2023.102546
摘要

Radiomics provides an opportunity to minimize adverse effects and optimize the efficacy of treatments noninvasively. This study aims to develop a computed tomography (CT) derived radiomic signature to predict radiological response for the patients with non-small cell lung cancer (NSCLC) receiving radiotherapy.Total 815 NSCLC patients receiving radiotherapy were sourced from public datasets. Using CT images of 281 NSCLC patients, we adopted genetic algorithm to establish a predictive radiomic signature for radiotherapy that had optimal C-index value by Cox model. Survival analysis and receiver operating characteristic curve were performed to estimate the predictive performance of the radiomic signature. Furthermore, radiogenomics analysis was performed in a dataset with matched images and transcriptome data.Radiomic signature consisting of three features was established and then validated in the validation dataset (log-rank P = 0.0047) including 140 patient, and showed a significant predictive power in two independent datasets totaling 395 NSCLC patients with binary 2-year survival endpoint. Furthermore, the novel proposed radiomic nomogram significantly improved the prognostic performance (concordance index) of clinicopathological factors. Radiogenomics analysis linked our signature with important tumor biological processes (e.g. Mismatch repair, Cell adhesion molecules and DNA replication) associated with clinical outcomes.The radiomic signature, reflecting tumor biological processes, could noninvasively predict therapeutic efficacy of NSCLC patients receiving radiotherapy and demonstrate unique advantage for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王槿完成签到,获得积分20
刚刚
1秒前
1秒前
宝剑葫芦完成签到,获得积分10
1秒前
可靠小懒虫完成签到,获得积分10
2秒前
王平宇发布了新的文献求助10
2秒前
无极微光应助舒适的半芹采纳,获得20
2秒前
爆米花应助幽默身影采纳,获得10
2秒前
顾矜应助oOL采纳,获得10
2秒前
大模型应助义气的巨人采纳,获得10
3秒前
4秒前
4秒前
5秒前
orixero应助王平宇采纳,获得30
6秒前
桐桐应助松子采纳,获得10
7秒前
火星上含芙完成签到 ,获得积分10
7秒前
ZhuJY完成签到,获得积分10
8秒前
moumou123发布了新的文献求助10
8秒前
8秒前
义气的菲鹰完成签到,获得积分10
8秒前
bkagyin应助怕孤独的语兰采纳,获得10
10秒前
李健的小迷弟应助1235采纳,获得10
10秒前
Ling发布了新的文献求助30
10秒前
10秒前
11秒前
科研通AI6应助JeanetteJin采纳,获得30
11秒前
11秒前
12秒前
晅007完成签到,获得积分10
12秒前
12秒前
13秒前
慕青应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480496
求助须知:如何正确求助?哪些是违规求助? 4581690
关于积分的说明 14381729
捐赠科研通 4510321
什么是DOI,文献DOI怎么找? 2471702
邀请新用户注册赠送积分活动 1458148
关于科研通互助平台的介绍 1431837