CT-derived radiomic analysis for predicting the survival rate of patients with non-small cell lung cancer receiving radiotherapy

放射基因组学 肺癌 放射治疗 医学 接收机工作特性 列线图 一致性 生存分析 肿瘤科 无线电技术 放射科 内科学
作者
Nannan Zhang,Xinxin Zhang,Junheng Li,Jie Ren,Luyang Li,Wenlei Dong,Yixin Liu
出处
期刊:Physica Medica [Elsevier]
卷期号:107: 102546-102546 被引量:1
标识
DOI:10.1016/j.ejmp.2023.102546
摘要

Radiomics provides an opportunity to minimize adverse effects and optimize the efficacy of treatments noninvasively. This study aims to develop a computed tomography (CT) derived radiomic signature to predict radiological response for the patients with non-small cell lung cancer (NSCLC) receiving radiotherapy.Total 815 NSCLC patients receiving radiotherapy were sourced from public datasets. Using CT images of 281 NSCLC patients, we adopted genetic algorithm to establish a predictive radiomic signature for radiotherapy that had optimal C-index value by Cox model. Survival analysis and receiver operating characteristic curve were performed to estimate the predictive performance of the radiomic signature. Furthermore, radiogenomics analysis was performed in a dataset with matched images and transcriptome data.Radiomic signature consisting of three features was established and then validated in the validation dataset (log-rank P = 0.0047) including 140 patient, and showed a significant predictive power in two independent datasets totaling 395 NSCLC patients with binary 2-year survival endpoint. Furthermore, the novel proposed radiomic nomogram significantly improved the prognostic performance (concordance index) of clinicopathological factors. Radiogenomics analysis linked our signature with important tumor biological processes (e.g. Mismatch repair, Cell adhesion molecules and DNA replication) associated with clinical outcomes.The radiomic signature, reflecting tumor biological processes, could noninvasively predict therapeutic efficacy of NSCLC patients receiving radiotherapy and demonstrate unique advantage for clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助夏冰雹采纳,获得10
刚刚
刚刚
1秒前
小rao关注了科研通微信公众号
1秒前
2秒前
板凳发布了新的文献求助10
2秒前
2秒前
鹏笑完成签到,获得积分10
2秒前
落水鎏情发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助554515541采纳,获得10
3秒前
Uber完成签到 ,获得积分10
3秒前
老马发布了新的文献求助30
4秒前
大个应助悲凉的孤萍采纳,获得10
4秒前
5秒前
打打应助管敬军采纳,获得10
6秒前
科研通AI6应助板凳采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
Windycityguy发布了新的文献求助10
7秒前
amin发布了新的文献求助10
7秒前
意义完成签到,获得积分10
8秒前
小面脑袋完成签到,获得积分20
8秒前
8秒前
沉醉的中国钵完成签到 ,获得积分10
9秒前
共享精神应助玲℃采纳,获得10
9秒前
幸运星完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
领导范儿应助高兴晓丝采纳,获得10
11秒前
33333发布了新的文献求助10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
Mic应助科研通管家采纳,获得10
12秒前
zho应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得30
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599307
求助须知:如何正确求助?哪些是违规求助? 4684893
关于积分的说明 14836988
捐赠科研通 4667699
什么是DOI,文献DOI怎么找? 2537887
邀请新用户注册赠送积分活动 1505378
关于科研通互助平台的介绍 1470783