异质结
材料科学
锂(药物)
纳米技术
制作
储能
电极
离子
接口(物质)
工程物理
光电子学
计算机科学
化学
工程类
物理
功率(物理)
复合材料
毛细管作用
替代医学
病理
有机化学
物理化学
内分泌学
医学
量子力学
毛细管数
作者
Eric Gabriel,Chunrong Ma,Kincaid Graff,Angel Conrado,Dewen Hou,Hui Xiong
出处
期刊:eScience
[Elsevier]
日期:2023-05-04
卷期号:3 (5): 100139-100139
被引量:90
标识
DOI:10.1016/j.esci.2023.100139
摘要
Sodium-ion batteries (SIBs) have stepped into the spotlight as a promising alternative to lithium-ion batteries for large-scale energy storage systems. However, SIB electrode materials, in general, have inferior performance than their lithium counterparts because Na+ is larger and heavier than Li+. Heterostructure engineering is a promising strategy to overcome this intrinsic limitation and achieve practical SIBs. We provide a brief review of recent progress in heterostructure engineering of electrode materials and research on how the phase interface influences Na+ storage and transport properties. Efficient strategies for the design and fabrication of heterostructures (in situ methods) are discussed, with a focus on the heterostructure formation mechanism. The heterostructure’s influence on Na+ storage and transport properties arises primarily from local distortions of the structure and chemomechanical coupling at the phase interface, which may accelerate ion/electron diffusion, create additional active sites, and bolster structural stability. Finally, we offer our perspectives on the existing challenges, knowledge gaps, and opportunities for the advancement of heterostructure engineering as a means to develop practical, high-performance sodium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI