Spatio-temporal variations and socio-economic drivers of air pollution: Evidence from 332 Chinese prefecture-level cities

环境科学 人均 中国 空气污染 污染 污染物 地理 环境保护 环境卫生 人口 生态学 医学 生物 考古
作者
Xue Zhou,Xiaolu Zhang,Yanan Wang,Wei Chen,Qiao Li
出处
期刊:Atmospheric Pollution Research [Elsevier]
卷期号:14 (6): 101782-101782 被引量:3
标识
DOI:10.1016/j.apr.2023.101782
摘要

Air pollution is the result of a complex interaction between natural and anthropogenic environmental conditions. Recently, what's the mutual correlation between air pollutants, and how the monthly socio-economic indicators influence air pollution at the prefecture-level cities are still lack of discussion. Based on monthly air pollutants concentrations and socio-economic indicators from January 2015 to September 2020, this study systematically explored the spatial-temporal characteristics of China's air pollutants and its socio-economic drivers. Results showed that annual mean concentrations of CO, NO2, SO2, PM10 and PM2.5 fell substantially from 2015 to 2020, decreasing by 37%, 27%, 63%, 39% and 40%, respectively, whereas O3 changed slightly. Summertime O3 and NO2 pollution in North China Plain, and wintertime air pollution in China remained the seriously polluted. PMs concentrations were significantly positively correlated with SO2, CO and NO2 concentrations. The increases in GDP per capita aggravated NO2 and PMs pollution in southeast coastal areas in spring and winter. The air pollution in North China Plain were severer in spring and winter induced by the monthly retail sales of social consumer goods. In the Fenwei Plain, the growing electricity consumption per GDP contributed to O3 and PM10 mitigation in summer and autumn. It is worth noting that the improvement of socio-economic level and energy consumption level showed a trend of exacerbating CO, NO2, and O3 pollution from 2015 to 2020. The comprehensive monthly analysis provides theoretical support for fine-scale monitoring and feasible control strategy formulating for achieving China's sustainable development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏破茧完成签到,获得积分10
刚刚
LL发布了新的文献求助10
刚刚
ddd完成签到,获得积分10
刚刚
刚刚
未央完成签到 ,获得积分10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
CodeCraft应助俊逸绝悟采纳,获得10
2秒前
shy完成签到,获得积分20
2秒前
3秒前
3秒前
3秒前
小哥发布了新的文献求助30
3秒前
pennell01发布了新的文献求助10
4秒前
4秒前
cencen完成签到 ,获得积分10
4秒前
林一发布了新的文献求助10
4秒前
ballon完成签到,获得积分10
4秒前
LL完成签到,获得积分10
5秒前
5秒前
韩国辉完成签到 ,获得积分10
5秒前
5秒前
所所应助甜甜采纳,获得10
6秒前
AAA陈完成签到 ,获得积分10
6秒前
MNing发布了新的文献求助10
7秒前
zgrmws应助丘奇采纳,获得10
7秒前
1111应助热心幻天采纳,获得10
7秒前
arniu2008应助黑章鱼保罗采纳,获得10
7秒前
7秒前
Criminology34应助LL采纳,获得10
7秒前
Thomas完成签到,获得积分10
8秒前
情怀应助zuozuodebgteng采纳,获得10
8秒前
安静的之玉完成签到,获得积分10
8秒前
8秒前
zx发布了新的文献求助10
8秒前
lbw完成签到 ,获得积分10
9秒前
四体不勤发布了新的文献求助20
9秒前
C Z P完成签到,获得积分10
9秒前
研友_VZG7GZ应助苏11采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613147
求助须知:如何正确求助?哪些是违规求助? 4698337
关于积分的说明 14897304
捐赠科研通 4735098
什么是DOI,文献DOI怎么找? 2546853
邀请新用户注册赠送积分活动 1510872
关于科研通互助平台的介绍 1473504