已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Radiomics Features of Median Nerves for Automated Diagnosis of Carpal Tunnel Syndrome With Ultrasound Images: A Multi‐Center Study

医学 腕管综合征 接收机工作特性 超声波 支持向量机 人工智能 正中神经 无线电技术 腕管 深度学习 模式识别(心理学) 放射科 计算机科学 外科 内科学
作者
Afshin Mohammadi,Thomas Torres‐Cuenca,Mohammad Mirza‐Aghazadeh‐Attari,Fariborz Faeghi,U. Rajendra Acharya,Ali Abbasian Ardakani
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:42 (10): 2257-2268 被引量:2
标识
DOI:10.1002/jum.16244
摘要

Objectives Ultrasound is widely used in diagnosing carpal tunnel syndrome (CTS). However, the limitations of ultrasound in CTS detection are the lack of objective measures in the detection of nerve abnormality and the operator‐dependent nature of ultrasound imaging. Therefore, in this study, we developed and proposed externally validated artificial intelligence (AI) models based on deep‐radiomics features. Methods We have used 416 median nerves from 2 countries (Iran and Colombia) for the development (112 entrapped and 112 normal nerves from Iran) and validation (26 entrapped and 26 normal nerves from Iran, and 70 entrapped and 70 normal nerves from Columbia) of our models. Ultrasound images were fed to the SqueezNet architecture to extract deep‐radiomics features. Then a ReliefF method was used to select the clinically significant features. The selected deep‐radiomics features were fed to 9 common machine‐learning algorithms to choose the best‐performing classifier. The 2 best‐performing AI models were then externally validated. Results Our developed model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.910 (88.46% sensitivity, 88.46% specificity) and 0.908 (84.62% sensitivity, 88.46% specificity) with support vector machine and stochastic gradient descent (SGD), respectively using the internal validation dataset. Furthermore, both models consistently performed well in the external validation dataset, and achieved an AUC of 0.890 (85.71% sensitivity, 82.86% specificity) and 0.890 (84.29% sensitivity and 82.86% specificity), with SVM and SGD models, respectively. Conclusion Our proposed AI models fed with deep‐radiomics features performed consistently with internal and external datasets. This justifies that our proposed system can be employed for clinical use in hospitals and polyclinics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颢懿完成签到 ,获得积分10
刚刚
Charles完成签到,获得积分10
刚刚
愉快谷芹完成签到 ,获得积分10
刚刚
NiceSunnyDay完成签到 ,获得积分10
1秒前
wynne313完成签到 ,获得积分10
1秒前
辛勤晓旋完成签到,获得积分10
1秒前
味子橘完成签到 ,获得积分10
3秒前
Wang完成签到,获得积分10
3秒前
ewmmel完成签到 ,获得积分10
3秒前
Dobby完成签到,获得积分10
4秒前
落寞飞烟完成签到,获得积分10
4秒前
super完成签到,获得积分10
4秒前
陈旧完成签到,获得积分10
4秒前
小叶完成签到 ,获得积分10
5秒前
Apei完成签到 ,获得积分10
5秒前
广东第一深情完成签到,获得积分10
6秒前
沉默白猫完成签到 ,获得积分10
6秒前
大知闲闲完成签到 ,获得积分10
6秒前
xiangwang完成签到 ,获得积分10
7秒前
WangWaud完成签到,获得积分10
7秒前
梅哈完成签到 ,获得积分10
7秒前
流苏完成签到,获得积分10
7秒前
Focus_BG完成签到,获得积分10
7秒前
锦七完成签到,获得积分10
8秒前
cyy完成签到 ,获得积分10
8秒前
cyn0762完成签到 ,获得积分10
9秒前
可爱紫文完成签到 ,获得积分10
9秒前
糟糕的初曼完成签到,获得积分10
9秒前
追寻的纸鹤完成签到 ,获得积分10
9秒前
风清扬完成签到,获得积分0
9秒前
传统的幻梦完成签到,获得积分10
10秒前
wei jie完成签到 ,获得积分10
10秒前
大熊完成签到 ,获得积分10
10秒前
Wang发布了新的文献求助10
11秒前
AUGKING27完成签到 ,获得积分10
11秒前
Maryamgvl完成签到 ,获得积分10
11秒前
星空完成签到 ,获得积分10
11秒前
lingo完成签到 ,获得积分10
12秒前
AnJaShua完成签到 ,获得积分10
13秒前
自觉凌蝶完成签到 ,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210

今日热心研友

coolkid
10
zhongu
10
尤苏福
10
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10