Deep Radiomics Features of Median Nerves for Automated Diagnosis of Carpal Tunnel Syndrome With Ultrasound Images: A Multi‐Center Study

医学 腕管综合征 接收机工作特性 超声波 支持向量机 人工智能 正中神经 无线电技术 腕管 深度学习 模式识别(心理学) 放射科 计算机科学 外科 内科学
作者
Afshin Mohammadi,Thomas Torres‐Cuenca,Mohammad Mirza‐Aghazadeh‐Attari,Fariborz Faeghi,U. Rajendra Acharya,Ali Abbasian Ardakani
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:42 (10): 2257-2268 被引量:2
标识
DOI:10.1002/jum.16244
摘要

Objectives Ultrasound is widely used in diagnosing carpal tunnel syndrome (CTS). However, the limitations of ultrasound in CTS detection are the lack of objective measures in the detection of nerve abnormality and the operator‐dependent nature of ultrasound imaging. Therefore, in this study, we developed and proposed externally validated artificial intelligence (AI) models based on deep‐radiomics features. Methods We have used 416 median nerves from 2 countries (Iran and Colombia) for the development (112 entrapped and 112 normal nerves from Iran) and validation (26 entrapped and 26 normal nerves from Iran, and 70 entrapped and 70 normal nerves from Columbia) of our models. Ultrasound images were fed to the SqueezNet architecture to extract deep‐radiomics features. Then a ReliefF method was used to select the clinically significant features. The selected deep‐radiomics features were fed to 9 common machine‐learning algorithms to choose the best‐performing classifier. The 2 best‐performing AI models were then externally validated. Results Our developed model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.910 (88.46% sensitivity, 88.46% specificity) and 0.908 (84.62% sensitivity, 88.46% specificity) with support vector machine and stochastic gradient descent (SGD), respectively using the internal validation dataset. Furthermore, both models consistently performed well in the external validation dataset, and achieved an AUC of 0.890 (85.71% sensitivity, 82.86% specificity) and 0.890 (84.29% sensitivity and 82.86% specificity), with SVM and SGD models, respectively. Conclusion Our proposed AI models fed with deep‐radiomics features performed consistently with internal and external datasets. This justifies that our proposed system can be employed for clinical use in hospitals and polyclinics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈发布了新的文献求助10
4秒前
乐乐应助酷盖采纳,获得10
11秒前
12秒前
双木夕完成签到,获得积分10
12秒前
13秒前
古的古的应助双木夕采纳,获得10
16秒前
seven完成签到,获得积分10
17秒前
洪亮完成签到,获得积分10
18秒前
热心雁易发布了新的文献求助10
19秒前
19秒前
19秒前
fairy完成签到,获得积分10
20秒前
lzzk完成签到,获得积分10
21秒前
666完成签到 ,获得积分10
21秒前
祭酒完成签到 ,获得积分10
21秒前
闪闪秋凌发布了新的文献求助10
22秒前
22秒前
fairy发布了新的文献求助10
24秒前
大个应助热心雁易采纳,获得10
28秒前
30秒前
31秒前
李健应助葡萄成熟时采纳,获得10
32秒前
samifranco发布了新的文献求助80
34秒前
35秒前
fy发布了新的文献求助10
37秒前
曼夭非夭发布了新的文献求助20
38秒前
40秒前
42秒前
43秒前
43秒前
威武的初兰完成签到 ,获得积分10
45秒前
45秒前
cttc完成签到,获得积分10
46秒前
资明轩发布了新的文献求助20
47秒前
LGZ完成签到 ,获得积分0
47秒前
fy完成签到,获得积分20
47秒前
玩命的紫南完成签到,获得积分10
48秒前
48秒前
机灵不评完成签到,获得积分20
49秒前
49秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136141
求助须知:如何正确求助?哪些是违规求助? 2787040
关于积分的说明 7780388
捐赠科研通 2443192
什么是DOI,文献DOI怎么找? 1298921
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870