Deep Radiomics Features of Median Nerves for Automated Diagnosis of Carpal Tunnel Syndrome With Ultrasound Images: A Multi‐Center Study

医学 腕管综合征 接收机工作特性 超声波 支持向量机 人工智能 正中神经 无线电技术 腕管 深度学习 模式识别(心理学) 放射科 计算机科学 外科 内科学
作者
Afshin Mohammadi,Thomas Torres‐Cuenca,Mohammad Mirza‐Aghazadeh‐Attari,Fariborz Faeghi,U. Rajendra Acharya,Ali Abbasian Ardakani
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:42 (10): 2257-2268 被引量:2
标识
DOI:10.1002/jum.16244
摘要

Objectives Ultrasound is widely used in diagnosing carpal tunnel syndrome (CTS). However, the limitations of ultrasound in CTS detection are the lack of objective measures in the detection of nerve abnormality and the operator‐dependent nature of ultrasound imaging. Therefore, in this study, we developed and proposed externally validated artificial intelligence (AI) models based on deep‐radiomics features. Methods We have used 416 median nerves from 2 countries (Iran and Colombia) for the development (112 entrapped and 112 normal nerves from Iran) and validation (26 entrapped and 26 normal nerves from Iran, and 70 entrapped and 70 normal nerves from Columbia) of our models. Ultrasound images were fed to the SqueezNet architecture to extract deep‐radiomics features. Then a ReliefF method was used to select the clinically significant features. The selected deep‐radiomics features were fed to 9 common machine‐learning algorithms to choose the best‐performing classifier. The 2 best‐performing AI models were then externally validated. Results Our developed model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.910 (88.46% sensitivity, 88.46% specificity) and 0.908 (84.62% sensitivity, 88.46% specificity) with support vector machine and stochastic gradient descent (SGD), respectively using the internal validation dataset. Furthermore, both models consistently performed well in the external validation dataset, and achieved an AUC of 0.890 (85.71% sensitivity, 82.86% specificity) and 0.890 (84.29% sensitivity and 82.86% specificity), with SVM and SGD models, respectively. Conclusion Our proposed AI models fed with deep‐radiomics features performed consistently with internal and external datasets. This justifies that our proposed system can be employed for clinical use in hospitals and polyclinics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pencil123应助易达采纳,获得10
刚刚
守约完成签到,获得积分10
1秒前
2秒前
2秒前
愤怒的之玉完成签到 ,获得积分10
3秒前
3秒前
欧阳小枫完成签到,获得积分10
3秒前
江海下百川完成签到,获得积分10
3秒前
3秒前
JamesPei应助小宇采纳,获得10
4秒前
4秒前
阿桂完成签到,获得积分10
4秒前
4秒前
沙比完成签到,获得积分10
5秒前
一一完成签到,获得积分10
5秒前
MicroCytoYL完成签到,获得积分10
6秒前
6秒前
一只特立独行的朱完成签到,获得积分10
6秒前
步行街车神ahua完成签到,获得积分10
6秒前
6秒前
keran完成签到,获得积分20
6秒前
1111发布了新的文献求助10
6秒前
动如脱兔发布了新的文献求助10
7秒前
starry完成签到,获得积分10
7秒前
8秒前
Grayball应助愉快的冰珍采纳,获得10
8秒前
8秒前
9秒前
Pangsj发布了新的文献求助10
9秒前
9秒前
9秒前
yzy完成签到,获得积分20
10秒前
11秒前
11秒前
Hang发布了新的文献求助10
11秒前
最初发布了新的文献求助10
12秒前
Lesile完成签到,获得积分10
12秒前
竹筏过海应助公西翠萱采纳,获得30
12秒前
12秒前
海子完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672