Does pattern matter? Exploring the pathways and effects of urban green space on promoting life satisfaction through reducing air pollution

城市绿地 空气污染 空格(标点符号) 污染 碎片(计算) 空气质量指数 环境科学 地理 环境工程 计算机科学 生态学 气象学 生物 操作系统
作者
Longfeng Wu,Chongxian Chen
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:82: 127890-127890 被引量:31
标识
DOI:10.1016/j.ufug.2023.127890
摘要

Urban green space is widely acknowledged to promote public health through multiple pathways. However, there is limited understanding of how the spatial patterns of green space might play different roles in such a process. This study examined potential pathways through which spatial patterns of green space improved people’s life satisfaction (LS) by reducing air pollution. A partial least squares structural equation model was adopted to explore these pathways in sampled urban areas (township) of China (n = 60). Green space spatial patterns were measured using landscape metrics of size, aggregation, fragmentation, and diversity. The results did not show that green space spatial pattern promoted LS by reducing air pollution. However, green space size and fragmentation were negatively associated with air pollution (mainly PM 2.5, PM 10, and NO 2). The pattern of highly densely distributed small green spaces was related to higher LS, as was high diversity of green space type. Simply adopting a fragmented green space pattern to reduce air pollution might be simultaneously associated with reduced LS. This alerts decision-makers and planners to the potential “double-edged sword” effect of optimizing green space structures to improve air quality, which may not yield strongly favorable results due to the impacts that hinder LS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠的芒果完成签到,获得积分10
1秒前
柔弱雅彤发布了新的文献求助10
1秒前
可爱的函函应助初一采纳,获得10
2秒前
2秒前
3秒前
个性的紫菜应助JIAN采纳,获得10
3秒前
旭东静静发布了新的文献求助10
4秒前
5秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
pp发布了新的文献求助10
8秒前
8秒前
未转头时皆梦完成签到,获得积分10
8秒前
脑洞疼应助hankpotter采纳,获得10
9秒前
SciGPT应助xiaoyuzi采纳,获得20
9秒前
芮rich完成签到,获得积分10
9秒前
a379896033完成签到 ,获得积分10
10秒前
望TIAN完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
syleaf完成签到 ,获得积分10
12秒前
今后应助圆锥香蕉采纳,获得20
12秒前
微笑孤云完成签到 ,获得积分10
12秒前
完美的沉鱼完成签到 ,获得积分10
13秒前
xutingfeng发布了新的文献求助10
13秒前
13秒前
14秒前
英俊的铭应助hrr采纳,获得10
14秒前
14秒前
望TIAN发布了新的文献求助10
15秒前
彭于晏应助pp采纳,获得10
15秒前
小二郎应助葡萄树采纳,获得10
15秒前
Owen应助summing采纳,获得10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106