Improved clinical utility of preimplantation genetic testing through the integration of ploidy and common pathogenic microdeletions analyses

基因检测 生物 倍性 非整倍体 流产 胚泡 植入前遗传学诊断 基因组印记 遗传学 单亲二体 怀孕 核型 胚胎 染色体 生物信息学 胚胎发生 基因 基因表达 DNA甲基化
作者
Silvia Caroselli,Matteo Figliuzzi,Ludovica Picchetta,Francesco Cogo,P Zambon,I Pergher,Laura Girardi,Cristina Patassini,Maurizio Poli,Daniela N. Bakalova,Danilo Cimadomo,Necati Fındıklı,Önder Coban,Münevver Serdarogullari,Francesco Favero,S Bortolato,A Anastasi,F Capodanno,A Gallinelli,Francesco Brancati
出处
期刊:Human Reproduction [Oxford University Press]
卷期号:38 (4): 762-775 被引量:15
标识
DOI:10.1093/humrep/dead033
摘要

Abstract STUDY QUESTION Can chromosomal abnormalities beyond copy-number aneuploidies (i.e. ploidy level and microdeletions (MDs)) be detected using a preimplantation genetic testing (PGT) platform? SUMMARY ANSWER The proposed integrated approach accurately assesses ploidy level and the most common pathogenic microdeletions causative of genomic disorders, expanding the clinical utility of PGT. WHAT IS KNOWN ALREADY Standard methodologies employed in preimplantation genetic testing for aneuploidy (PGT-A) identify chromosomal aneuploidies but cannot determine ploidy level nor the presence of recurrent pathogenic MDs responsible for genomic disorders. Transferring embryos carrying these abnormalities can result in miscarriage, molar pregnancy, and intellectual disabilities and developmental delay in offspring. The development of a testing strategy that integrates their assessment can resolve current limitations and add valuable information regarding the genetic constitution of embryos, which is not evaluated in PGT providing new level of clinical utility and valuable knowledge for further understanding of the genomic causes of implantation failure and early pregnancy loss. To the best of our knowledge, MDs have never been studied in preimplantation human embryos up to date. STUDY DESIGN, SIZE, DURATION This is a retrospective cohort analysis including blastocyst biopsies collected between February 2018 and November 2021 at multiple collaborating IVF clinics from prospective parents of European ancestry below the age of 45, using autologous gametes and undergoing ICSI for all oocytes. Ploidy level determination was validated using 164 embryonic samples of known ploidy status (147 diploids, 9 triploids, and 8 haploids). Detection of nine common MD syndromes (-4p=Wolf-Hirschhorn, -8q=Langer-Giedion, -1p=1p36 deletion, -22q=DiGeorge, -5p=Cri-du-Chat, -15q=Prader-Willi/Angelman, -11q=Jacobsen, -17p=Smith-Magenis) was developed and tested using 28 positive controls and 97 negative controls. Later, the methodology was blindly applied in the analysis of: (i) 100 two pronuclei (2PN)-derived blastocysts that were previously defined as uniformly euploid by standard PGT-A; (ii) 99 euploid embryos whose transfer resulted in pregnancy loss. PARTICIPANTS/MATERIALS, SETTING, METHODS The methodology is based on targeted next-generation sequencing of selected polymorphisms across the genome and enriched within critical regions of included MD syndromes. Sequencing data (i.e. allelic frequencies) were analyzed by a probabilistic model which estimated the likelihood of ploidy level and MD presence, accounting for both sequencing noise and population genetics patterns (i.e. linkage disequilibrium, LD, correlations) observed in 2504 whole-genome sequencing data from the 1000 Genome Project database. Analysis of phased parental haplotypes obtained by single-nucleotide polymorphism (SNP)-array genotyping was performed to confirm the presence of MD. MAIN RESULTS AND THE ROLE OF CHANCE In the analytical validation phase, this strategy showed extremely high accuracy both in ploidy classification (100%, CI: 98.1–100%) and in the identification of six out of eight MDs (99.2%, CI: 98.5–99.8%). To improve MD detection based on loss of heterozygosity (LOH), common haploblocks were analyzed based on haplotype frequency and LOH occurrence in a reference population, thus developing two further mathematical models. As a result, chr1p36 and chr4p16.3 regions were excluded from MD identification due to their poor reliability, whilst a clinical workflow which incorporated parental DNA information was developed to enhance the identification of MDs. During the clinical application phase, one case of triploidy was detected among 2PN-derived blastocysts (i) and one pathogenic MD (-22q11.21) was retrospectively identified among the biopsy specimens of transferred embryos that resulted in miscarriage (ii). For the latter case, family-based analysis revealed the same MD in different sibling embryos (n = 2/5) from non-carrier parents, suggesting the presence of germline mosaicism in the female partner. When embryos are selected for transfer based on their genetic constitution, this strategy can identify embryos with ploidy abnormalities and/or MDs beyond aneuploidies, with an estimated incidence of 1.5% (n = 3/202, 95% CI: 0.5–4.5%) among euploid embryos. LIMITATIONS, REASONS FOR CAUTION Epidemiological studies will be required to accurately assess the incidence of ploidy alterations and MDs in preimplantation embryos and particularly in euploid miscarriages. Despite the high accuracy of the assay developed, the use of parental DNA to support diagnostic calling can further increase the precision of the assay. WIDER IMPLICATIONS OF THE FINDINGS This novel assay significantly expands the clinical utility of PGT-A by integrating the most common pathogenic MDs (both de novo and inherited ones) responsible for genomic disorders, which are usually evaluated at a later stage through invasive prenatal testing. From a basic research standpoint, this approach will help to elucidate fundamental biological and clinical questions related to the genetics of implantation failure and pregnancy loss of otherwise euploid embryos. STUDY FUNDING/COMPETING INTEREST(S) No external funding was used for this study. S.C., M.F., F.C., P.Z., I.P., L.G., C.P., M.P., D.B., J.J.-A., D.B.-J., J.M.-V., and C.R. are employees of Igenomix and C.S. is the head of the scientific board of Igenomix. A.C. and L.P. are employees of JUNO GENETICS. Igenomix and JUNO GENETICS are companies providing reproductive genetic services. TRIAL REGISTRATION NUMBER N/A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云霓发布了新的文献求助10
1秒前
1秒前
zhj完成签到,获得积分10
2秒前
LLL完成签到,获得积分10
2秒前
2秒前
JA发布了新的文献求助50
3秒前
查无此人发布了新的文献求助10
3秒前
承诺信守完成签到,获得积分10
4秒前
酷波er应助七点采纳,获得10
4秒前
5秒前
5秒前
ABC发布了新的文献求助10
5秒前
醋灯笼完成签到,获得积分10
6秒前
6秒前
lalala应助sci_sci采纳,获得10
7秒前
8秒前
8秒前
FashionBoy应助夏末采纳,获得10
8秒前
9秒前
团子发布了新的文献求助10
9秒前
科研通AI6应助guangyu采纳,获得10
10秒前
传奇3应助聪明的半青采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
端庄芯发布了新的文献求助10
13秒前
14秒前
不做科研发布了新的文献求助10
14秒前
幸运鹅47完成签到,获得积分10
15秒前
夜染发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
18秒前
bonjourqiao完成签到,获得积分10
20秒前
20秒前
21秒前
清凉茶完成签到,获得积分10
22秒前
小二郎应助花生什么树了采纳,获得10
23秒前
天天快乐应助iwonder采纳,获得10
23秒前
wanci应助郑方舟采纳,获得10
24秒前
珊明治完成签到,获得积分10
26秒前
26秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660407
求助须知:如何正确求助?哪些是违规求助? 4833752
关于积分的说明 15090568
捐赠科研通 4819045
什么是DOI,文献DOI怎么找? 2578992
邀请新用户注册赠送积分活动 1533551
关于科研通互助平台的介绍 1492304