亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Impact of human contact patterns on epidemic spreading in time-varying networks

成对比较 过程(计算) 分布(数学) GSM演进的增强数据速率 统计物理学 物理 计算机科学 数学 数学分析 人工智能 操作系统
作者
Lilei Han,Zhaohua Lin,Ming Tang,Ying Liu,Shuguang Guan
出处
期刊:Physical review [American Physical Society]
卷期号:107 (2) 被引量:5
标识
DOI:10.1103/physreve.107.024312
摘要

Human contact behaviors involve both dormant and active processes. The dormant (active) process goes from the disappearance (creation) to the creation (disappearance) of an edge. The dormant (active) time is the elapsed time since the edge became dormant (active). Many empirical studies have revealed that dormant and active times in human contact behaviors tend to show a long-tailed distribution. Previous researches focused on the impact of the dormant process on spreading dynamics. However, the epidemic spreading happens on the active process. This raises the question of how the active process affects epidemic spreading in complex networks. Here, we propose a novel time-varying network model in which the distributions of both the dormant time and active time of edges are adjustable. We develop a pairwise approximation method to describe the spreading dynamical processes in the time-varying networks. Through extensive numerical simulations, we find that the epidemic threshold is proportional to the mean dormant time and inversely proportional to the mean active time. The attack rate decreases with the increase of mean dormant time and increases with the increase of mean active time. It is worth noting that the epidemic threshold and the attack rate (e.g., the infected density in the steady state) are independent of the heterogeneities of the dormant time distribution and the active time distribution. Increasing the heterogeneity of the dormant time distribution accelerates epidemic spreading while increasing the heterogeneity of the active time distribution slows it down.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冉亦完成签到,获得积分10
1秒前
搜集达人应助null采纳,获得10
1秒前
可爱的函函应助香菜肉丸采纳,获得10
4秒前
14秒前
平淡映秋发布了新的文献求助10
17秒前
focus完成签到 ,获得积分10
18秒前
香菜肉丸发布了新的文献求助10
21秒前
31秒前
40秒前
51秒前
1分钟前
犬来八荒发布了新的文献求助10
1分钟前
simple1完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Cherry发布了新的文献求助10
1分钟前
charih完成签到 ,获得积分10
1分钟前
1分钟前
CodeCraft应助犬来八荒采纳,获得10
1分钟前
1分钟前
1分钟前
ding应助小橘子吃傻子采纳,获得10
1分钟前
2分钟前
Tania完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
辉辉应助科研通管家采纳,获得10
3分钟前
3分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091