Adaptive Search-and-Training for Robust and Efficient Network Pruning

计算机科学 修剪 人工智能 机器学习 稳健性(进化) 人工神经网络 灵活性(工程) 子网 强化学习 水准点(测量) 数学 地理 大地测量学 基因 农学 生物 计算机安全 统计 化学 生物化学
作者
Xiaotong Lu,Weisheng Dong,Xin Li,Jinjian Wu,Leida Li,Guangming Shi
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (8): 9325-9338 被引量:8
标识
DOI:10.1109/tpami.2023.3248612
摘要

Both network pruning and neural architecture search (NAS) can be interpreted as techniques to automate the design and optimization of artificial neural networks. In this paper, we challenge the conventional wisdom of training before pruning by proposing a joint search-and-training approach to learn a compact network directly from scratch. Using pruning as a search strategy, we advocate three new insights for network engineering: 1) to formulate adaptive search as a cold start strategy to find a compact subnetwork on the coarse scale; and 2) to automatically learn the threshold for network pruning; 3) to offer flexibility to choose between efficiency and robustness . More specifically, we propose an adaptive search algorithm in the cold start by exploiting the randomness and flexibility of filter pruning. The weights associated with the network filters will be updated by ThreshNet, a flexible coarse-to-fine pruning method inspired by reinforcement learning. In addition, we introduce a robust pruning strategy leveraging the technique of knowledge distillation through a teacher-student network. Extensive experiments on ResNet and VGGNet have shown that our proposed method can achieve a better balance in terms of efficiency and accuracy and notable advantages over current state-of-the-art pruning methods in several popular datasets, including CIFAR10, CIFAR100, and ImageNet. The code associate with this paper is available at: https://see.xidian.edu.cn/faculty/wsdong/Projects/AST-NP.htm .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助Alexa采纳,获得10
1秒前
无花果应助lutiantian采纳,获得10
2秒前
2秒前
香蕉书竹发布了新的文献求助30
2秒前
3秒前
MIMI发布了新的文献求助10
3秒前
yujian完成签到,获得积分10
3秒前
木木发布了新的文献求助10
4秒前
4秒前
科研通AI5应助宇文思采纳,获得10
4秒前
顾矜应助WS采纳,获得10
5秒前
orixero应助999采纳,获得10
5秒前
lai发布了新的文献求助20
5秒前
苹果白山发布了新的文献求助10
6秒前
6秒前
可爱的函函应助丢丢银采纳,获得10
6秒前
ding应助哒哒李采纳,获得10
6秒前
Hello应助Hh采纳,获得10
7秒前
JamesPei应助RJM采纳,获得10
8秒前
思源应助寒冷的傲柏采纳,获得10
8秒前
科研通AI5应助寒冷的傲柏采纳,获得10
8秒前
9秒前
知性的幻巧完成签到,获得积分10
9秒前
丘比特应助都好都好好的采纳,获得10
9秒前
英俊的铭应助旭日采纳,获得10
9秒前
bkagyin应助旭日采纳,获得10
9秒前
深情安青应助旭日采纳,获得10
9秒前
我是老大应助科研狗采纳,获得10
10秒前
Lucas应助木木采纳,获得10
10秒前
最好我儿长柏高中完成签到,获得积分10
12秒前
13秒前
gying应助今天吃什么采纳,获得30
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
236完成签到,获得积分10
14秒前
15秒前
lxcy0612发布了新的文献求助10
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476968
求助须知:如何正确求助?哪些是违规求助? 3068497
关于积分的说明 9108099
捐赠科研通 2759928
什么是DOI,文献DOI怎么找? 1514467
邀请新用户注册赠送积分活动 700244
科研通“疑难数据库(出版商)”最低求助积分说明 699412