Automatic segmentation of the choroid plexuses: Method and validation in controls and patients with multiple sclerosis

磁共振成像 分割 Sørensen–骰子系数 多发性硬化 队列 预处理器 侧脑室 医学 计算机科学 脑脊液 人工智能 放射科 病理 模式识别(心理学) 图像分割 精神科
作者
Arya Yazdan Panah,Marius Schmidt-Mengin,Vito A. G. Ricigliano,Théodore Soulier,Bruno Stankoff,Olivier Colliot
出处
期刊:NeuroImage: Clinical [Elsevier]
卷期号:38: 103368-103368 被引量:4
标识
DOI:10.1016/j.nicl.2023.103368
摘要

Choroid Plexuses (ChP) are structures located in the ventricles that produce the cerebrospinal fluid (CSF) in the central nervous system. They are also a key component of the blood-CSF barrier. Recent studies have described clinically relevant ChP volumetric changes in several neurological diseases including Alzheimer’s, Parkinson’s disease, and multiple sclerosis (MS). Therefore, a reliable and automated tool for ChP segmentation on images derived from magnetic resonance imaging (MRI) is a crucial need for large studies attempting to elucidate their role in neurological disorders. Here, we propose a novel automatic method for ChP segmentation in large imaging datasets. The approach is based on a 2-step 3D U-Net to keep preprocessing steps to a minimum for ease of use and to lower memory requirements. The models are trained and validated on a first research cohort including people with MS and healthy subjects. A second validation is also performed on a cohort of pre-symptomatic MS patients having acquired MRIs in routine clinical practice. Our method reaches an average Dice coefficient of 0.72 ± 0.01 with the ground truth and a volume correlation of 0.86 on the first cohort while outperforming FreeSurfer and FastSurfer-based ChP segmentations. On the dataset originating from clinical practice, the method reaches a Dice coefficient of 0.67 ± 0.01 (being close to the inter-rater agreement of 0.64 ± 0.02) and a volume correlation of 0.84. These results demonstrate that this is a suitable and robust method for the segmentation of the ChP both on research and clinical datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娜行发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
Ck完成签到,获得积分10
2秒前
烦烦完成签到 ,获得积分10
3秒前
百宝发布了新的文献求助10
4秒前
jiangnan发布了新的文献求助10
4秒前
Sev完成签到,获得积分10
4秒前
4秒前
可耐的乘风完成签到,获得积分10
4秒前
FIN应助obito采纳,获得30
5秒前
啾啾发布了新的文献求助10
5秒前
爱学习的向日葵完成签到,获得积分10
6秒前
6秒前
华仔应助泛泛之交采纳,获得10
7秒前
雪123发布了新的文献求助10
7秒前
7秒前
8秒前
charon发布了新的文献求助10
8秒前
凶狠的食铁兽完成签到,获得积分10
8秒前
星辰大海应助花花啊采纳,获得10
8秒前
华仔应助liuyingke采纳,获得10
8秒前
HEIKU应助还不如瞎写采纳,获得10
9秒前
liuliumei发布了新的文献求助30
10秒前
zhouzhou完成签到,获得积分10
10秒前
sure发布了新的文献求助10
10秒前
上官若男应助Hu111采纳,获得10
11秒前
务实的紫伊完成签到,获得积分10
11秒前
春风得意完成签到,获得积分10
11秒前
爱你呃不可能完成签到,获得积分10
11秒前
WSY完成签到,获得积分20
11秒前
666星爷留下了新的社区评论
12秒前
风吹似夏完成签到,获得积分10
12秒前
12秒前
李健应助crr采纳,获得10
12秒前
tao完成签到,获得积分20
13秒前
淡淡的雪完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672