Automatic segmentation of the choroid plexuses: Method and validation in controls and patients with multiple sclerosis

磁共振成像 分割 Sørensen–骰子系数 多发性硬化 队列 预处理器 侧脑室 医学 计算机科学 脑脊液 人工智能 放射科 病理 模式识别(心理学) 图像分割 精神科
作者
Arya Yazdan Panah,Marius Schmidt-Mengin,Vito A. G. Ricigliano,Théodore Soulier,Bruno Stankoff,Olivier Colliot
出处
期刊:NeuroImage: Clinical [Elsevier]
卷期号:38: 103368-103368 被引量:4
标识
DOI:10.1016/j.nicl.2023.103368
摘要

Choroid Plexuses (ChP) are structures located in the ventricles that produce the cerebrospinal fluid (CSF) in the central nervous system. They are also a key component of the blood-CSF barrier. Recent studies have described clinically relevant ChP volumetric changes in several neurological diseases including Alzheimer’s, Parkinson’s disease, and multiple sclerosis (MS). Therefore, a reliable and automated tool for ChP segmentation on images derived from magnetic resonance imaging (MRI) is a crucial need for large studies attempting to elucidate their role in neurological disorders. Here, we propose a novel automatic method for ChP segmentation in large imaging datasets. The approach is based on a 2-step 3D U-Net to keep preprocessing steps to a minimum for ease of use and to lower memory requirements. The models are trained and validated on a first research cohort including people with MS and healthy subjects. A second validation is also performed on a cohort of pre-symptomatic MS patients having acquired MRIs in routine clinical practice. Our method reaches an average Dice coefficient of 0.72 ± 0.01 with the ground truth and a volume correlation of 0.86 on the first cohort while outperforming FreeSurfer and FastSurfer-based ChP segmentations. On the dataset originating from clinical practice, the method reaches a Dice coefficient of 0.67 ± 0.01 (being close to the inter-rater agreement of 0.64 ± 0.02) and a volume correlation of 0.84. These results demonstrate that this is a suitable and robust method for the segmentation of the ChP both on research and clinical datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sdf完成签到,获得积分20
1秒前
无问西东发布了新的文献求助10
1秒前
1秒前
lrz发布了新的文献求助10
1秒前
小芒果完成签到,获得积分10
2秒前
3秒前
瘦瘦彩虹完成签到,获得积分10
3秒前
Chiwen发布了新的文献求助10
3秒前
谦让寄容发布了新的文献求助10
3秒前
Painkiller_发布了新的文献求助10
3秒前
Gamera完成签到 ,获得积分10
6秒前
6秒前
核桃发布了新的文献求助10
7秒前
Zuguo发布了新的文献求助10
7秒前
无问西东完成签到,获得积分10
8秒前
老张水泥建材完成签到,获得积分10
9秒前
芊芊完成签到 ,获得积分10
9秒前
10秒前
jdp完成签到,获得积分10
10秒前
13秒前
sdf发布了新的文献求助10
14秒前
15秒前
啊印发布了新的文献求助10
18秒前
liu发布了新的文献求助10
18秒前
复杂斓发布了新的文献求助10
19秒前
左手树完成签到,获得积分10
20秒前
风趣雪卉完成签到 ,获得积分10
20秒前
Lucas应助Painkiller_采纳,获得10
20秒前
NN完成签到 ,获得积分10
21秒前
21秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
23秒前
思源应助科研通管家采纳,获得10
23秒前
Owen应助科研通管家采纳,获得10
23秒前
传奇3应助Sir.夏季风采纳,获得10
23秒前
wlscj应助科研通管家采纳,获得20
23秒前
劳恩特应助科研通管家采纳,获得10
23秒前
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648