DFGNN: An interpretable and generalized graph neural network for deepfakes detection

计算机科学 图形 概化理论 人工智能 机器学习 模式识别(心理学) 深度学习 数据挖掘 理论计算机科学 数学 统计
作者
Fatima Khalid,Ali Javed,Quratul Ain,Hafsa Ilyas,Aun Irtaza
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:222: 119843-119843 被引量:9
标识
DOI:10.1016/j.eswa.2023.119843
摘要

Deepfakes are generated using sophisticated deep-learning models to create fake images or videos. As the techniques for creating deepfakes improve, issues like defamation, impersonation, fraud, and misinformation on social media are becoming more prevalent. Existing deep learning-based deepfakes detection models are not interpretable and don't generalize well when tested across diverse deepfakes generating techniques and datasets. Therefore, the creation of reliable and effective deepfakes detection algorithms is required which are not only generalizable but also interpretable. This paper introduces a novel graph neural network-based architecture to identify hyper-realist deepfake content. Currently, very limited efforts have been done to address the problem of deepfakes detection using graph neural networks. The proposed model is based on the pyramid structure that takes advantage of multi-scale images property by extracting features with progressively smaller spatial sizes as layer depth increases. The method first sliced the image into patches, which are referred to as nodes, and then constructed a graph by connecting the nearest neighbors. To transform and exchange information between all nodes, the proposed model has two basic modules: GraphNet, which uses graph convolution layers to aggregate and update graph information, and FFN, which has linear layers for the transformation of node features. The effectiveness of the method is assessed using the diverse Deepfake Detection Challenge dataset (DFDC), FaceForensics++ (FF++), World Leaders dataset (WLRD), and the Celeb-DF. To demonstrate the generalizability of the proposed method for accurate deepfakes detection, open/close set, cross-set, and cross-corpora evaluations were also performed. The AUC values of 0.98 on FF++, 0.95 on Celeb-DF, 0.92 on DFDC, and 1.00 on most of the sets of WLRD datasets demonstrate the efficacy of the method for identifying manipulated facial images produced using various deepfakes techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
fanyy完成签到,获得积分10
1秒前
orixero应助JJFly采纳,获得10
1秒前
1秒前
LHW发布了新的文献求助10
1秒前
1秒前
十六发布了新的文献求助10
1秒前
顺利戒指发布了新的文献求助10
2秒前
2秒前
昼夜本色发布了新的文献求助10
3秒前
3秒前
miaomiao发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
彭于晏应助qinzhikai采纳,获得10
4秒前
果果发布了新的文献求助10
4秒前
PubLing_完成签到,获得积分20
4秒前
拼搏的平松完成签到,获得积分10
5秒前
柚子完成签到,获得积分10
5秒前
6秒前
hao2023发布了新的文献求助10
6秒前
是帆帆呀发布了新的文献求助30
6秒前
6秒前
7秒前
阿良完成签到,获得积分10
7秒前
7秒前
李健应助风181013采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
zq发布了新的文献求助10
8秒前
CipherSage应助浅笑采纳,获得10
8秒前
8秒前
8秒前
香蕉觅云应助whisper采纳,获得10
8秒前
8秒前
lr关闭了lr文献求助
8秒前
小熊发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851