亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DFGNN: An interpretable and generalized graph neural network for deepfakes detection

计算机科学 图形 概化理论 人工智能 机器学习 模式识别(心理学) 深度学习 数据挖掘 理论计算机科学 数学 统计
作者
Fatima Khalid,Ali Javed,Quratul Ain,Hafsa Ilyas,Aun Irtaza
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:222: 119843-119843 被引量:9
标识
DOI:10.1016/j.eswa.2023.119843
摘要

Deepfakes are generated using sophisticated deep-learning models to create fake images or videos. As the techniques for creating deepfakes improve, issues like defamation, impersonation, fraud, and misinformation on social media are becoming more prevalent. Existing deep learning-based deepfakes detection models are not interpretable and don't generalize well when tested across diverse deepfakes generating techniques and datasets. Therefore, the creation of reliable and effective deepfakes detection algorithms is required which are not only generalizable but also interpretable. This paper introduces a novel graph neural network-based architecture to identify hyper-realist deepfake content. Currently, very limited efforts have been done to address the problem of deepfakes detection using graph neural networks. The proposed model is based on the pyramid structure that takes advantage of multi-scale images property by extracting features with progressively smaller spatial sizes as layer depth increases. The method first sliced the image into patches, which are referred to as nodes, and then constructed a graph by connecting the nearest neighbors. To transform and exchange information between all nodes, the proposed model has two basic modules: GraphNet, which uses graph convolution layers to aggregate and update graph information, and FFN, which has linear layers for the transformation of node features. The effectiveness of the method is assessed using the diverse Deepfake Detection Challenge dataset (DFDC), FaceForensics++ (FF++), World Leaders dataset (WLRD), and the Celeb-DF. To demonstrate the generalizability of the proposed method for accurate deepfakes detection, open/close set, cross-set, and cross-corpora evaluations were also performed. The AUC values of 0.98 on FF++, 0.95 on Celeb-DF, 0.92 on DFDC, and 1.00 on most of the sets of WLRD datasets demonstrate the efficacy of the method for identifying manipulated facial images produced using various deepfakes techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
cc应助科研通管家采纳,获得30
42秒前
充电宝应助nsc采纳,获得10
50秒前
领导范儿应助nsc采纳,获得10
50秒前
善学以致用应助nsc采纳,获得50
50秒前
在水一方应助nsc采纳,获得10
50秒前
科研通AI5应助nsc采纳,获得100
50秒前
田様应助nsc采纳,获得10
50秒前
Hello应助nsc采纳,获得10
50秒前
小二郎应助nsc采纳,获得10
50秒前
传奇3应助nsc采纳,获得10
50秒前
Lucas应助nsc采纳,获得10
50秒前
55秒前
lovelife完成签到,获得积分10
57秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
贝贝完成签到 ,获得积分10
1分钟前
1分钟前
现代的曲奇完成签到 ,获得积分10
2分钟前
小马甲应助nsc采纳,获得10
2分钟前
Hello应助nsc采纳,获得10
2分钟前
万能图书馆应助nsc采纳,获得10
2分钟前
华仔应助nsc采纳,获得30
2分钟前
CipherSage应助nsc采纳,获得10
2分钟前
Jasper应助nsc采纳,获得10
2分钟前
在水一方应助nsc采纳,获得10
2分钟前
小马甲应助nsc采纳,获得10
2分钟前
慕青应助nsc采纳,获得10
2分钟前
脑洞疼应助nsc采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
孙老师完成签到 ,获得积分10
2分钟前
Ava应助nsc采纳,获得10
3分钟前
田様应助nsc采纳,获得10
3分钟前
小蘑菇应助nsc采纳,获得10
3分钟前
Hello应助nsc采纳,获得10
3分钟前
orixero应助nsc采纳,获得10
3分钟前
小二郎应助nsc采纳,获得10
3分钟前
无花果应助nsc采纳,获得10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957061
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264