已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DFGNN: An interpretable and generalized graph neural network for deepfakes detection

计算机科学 图形 概化理论 人工智能 机器学习 模式识别(心理学) 深度学习 数据挖掘 理论计算机科学 数学 统计
作者
Fatima Khalid,Ali Javed,Quratul Ain,Hafsa Ilyas,Aun Irtaza
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:222: 119843-119843 被引量:9
标识
DOI:10.1016/j.eswa.2023.119843
摘要

Deepfakes are generated using sophisticated deep-learning models to create fake images or videos. As the techniques for creating deepfakes improve, issues like defamation, impersonation, fraud, and misinformation on social media are becoming more prevalent. Existing deep learning-based deepfakes detection models are not interpretable and don't generalize well when tested across diverse deepfakes generating techniques and datasets. Therefore, the creation of reliable and effective deepfakes detection algorithms is required which are not only generalizable but also interpretable. This paper introduces a novel graph neural network-based architecture to identify hyper-realist deepfake content. Currently, very limited efforts have been done to address the problem of deepfakes detection using graph neural networks. The proposed model is based on the pyramid structure that takes advantage of multi-scale images property by extracting features with progressively smaller spatial sizes as layer depth increases. The method first sliced the image into patches, which are referred to as nodes, and then constructed a graph by connecting the nearest neighbors. To transform and exchange information between all nodes, the proposed model has two basic modules: GraphNet, which uses graph convolution layers to aggregate and update graph information, and FFN, which has linear layers for the transformation of node features. The effectiveness of the method is assessed using the diverse Deepfake Detection Challenge dataset (DFDC), FaceForensics++ (FF++), World Leaders dataset (WLRD), and the Celeb-DF. To demonstrate the generalizability of the proposed method for accurate deepfakes detection, open/close set, cross-set, and cross-corpora evaluations were also performed. The AUC values of 0.98 on FF++, 0.95 on Celeb-DF, 0.92 on DFDC, and 1.00 on most of the sets of WLRD datasets demonstrate the efficacy of the method for identifying manipulated facial images produced using various deepfakes techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang183clue完成签到,获得积分10
2秒前
幸福大白发布了新的文献求助10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
不安青牛应助科研通管家采纳,获得10
4秒前
ccm应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得20
4秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
微笑南烟完成签到,获得积分10
5秒前
5秒前
6秒前
zhang183clue发布了新的文献求助10
7秒前
科目三应助葱饼采纳,获得10
8秒前
等等完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助结实的尔岚采纳,获得10
9秒前
鱼贝贝完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
彩色不评完成签到,获得积分10
13秒前
13秒前
皮肤科应助weijian采纳,获得30
15秒前
Xdz完成签到 ,获得积分10
15秒前
Kai完成签到,获得积分10
16秒前
儒雅涵易完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
hkf发布了新的文献求助10
19秒前
65A97a发布了新的文献求助10
19秒前
20秒前
21秒前
Johnason_ZC发布了新的文献求助10
23秒前
李桥溪发布了新的文献求助10
23秒前
一敦团子发布了新的文献求助10
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4609841
求助须知:如何正确求助?哪些是违规求助? 4016077
关于积分的说明 12434231
捐赠科研通 3697464
什么是DOI,文献DOI怎么找? 2038746
邀请新用户注册赠送积分活动 1071727
科研通“疑难数据库(出版商)”最低求助积分说明 955446