DFGNN: An interpretable and generalized graph neural network for deepfakes detection

计算机科学 图形 概化理论 人工智能 机器学习 模式识别(心理学) 深度学习 数据挖掘 理论计算机科学 数学 统计
作者
Fatima Khalid,Ali Javed,Quratul Ain,Hafsa Ilyas,Aun Irtaza
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:222: 119843-119843 被引量:9
标识
DOI:10.1016/j.eswa.2023.119843
摘要

Deepfakes are generated using sophisticated deep-learning models to create fake images or videos. As the techniques for creating deepfakes improve, issues like defamation, impersonation, fraud, and misinformation on social media are becoming more prevalent. Existing deep learning-based deepfakes detection models are not interpretable and don't generalize well when tested across diverse deepfakes generating techniques and datasets. Therefore, the creation of reliable and effective deepfakes detection algorithms is required which are not only generalizable but also interpretable. This paper introduces a novel graph neural network-based architecture to identify hyper-realist deepfake content. Currently, very limited efforts have been done to address the problem of deepfakes detection using graph neural networks. The proposed model is based on the pyramid structure that takes advantage of multi-scale images property by extracting features with progressively smaller spatial sizes as layer depth increases. The method first sliced the image into patches, which are referred to as nodes, and then constructed a graph by connecting the nearest neighbors. To transform and exchange information between all nodes, the proposed model has two basic modules: GraphNet, which uses graph convolution layers to aggregate and update graph information, and FFN, which has linear layers for the transformation of node features. The effectiveness of the method is assessed using the diverse Deepfake Detection Challenge dataset (DFDC), FaceForensics++ (FF++), World Leaders dataset (WLRD), and the Celeb-DF. To demonstrate the generalizability of the proposed method for accurate deepfakes detection, open/close set, cross-set, and cross-corpora evaluations were also performed. The AUC values of 0.98 on FF++, 0.95 on Celeb-DF, 0.92 on DFDC, and 1.00 on most of the sets of WLRD datasets demonstrate the efficacy of the method for identifying manipulated facial images produced using various deepfakes techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得30
刚刚
Vzem完成签到 ,获得积分10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
终梦应助文静的柠檬采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
淡然钢笔完成签到,获得积分10
1秒前
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
Hello应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
隐形的巴豆完成签到,获得积分10
2秒前
2秒前
小新应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
满意发布了新的文献求助10
2秒前
abc完成签到,获得积分10
2秒前
123yaoyao发布了新的文献求助10
2秒前
2秒前
liu完成签到,获得积分10
3秒前
3秒前
安静远望完成签到,获得积分20
3秒前
4秒前
可爱的稚晴完成签到,获得积分20
4秒前
咩咩发布了新的文献求助10
4秒前
山猫完成签到,获得积分10
4秒前
橙子完成签到,获得积分10
5秒前
12123浪发布了新的文献求助10
5秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283704
求助须知:如何正确求助?哪些是违规求助? 4437469
关于积分的说明 13813675
捐赠科研通 4318220
什么是DOI,文献DOI怎么找? 2370348
邀请新用户注册赠送积分活动 1365683
关于科研通互助平台的介绍 1329143