DFGNN: An interpretable and generalized graph neural network for deepfakes detection

计算机科学 图形 概化理论 人工智能 机器学习 模式识别(心理学) 深度学习 数据挖掘 理论计算机科学 数学 统计
作者
Fatima Khalid,Ali Javed,Quratul Ain,Hafsa Ilyas,Aun Irtaza
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:222: 119843-119843 被引量:9
标识
DOI:10.1016/j.eswa.2023.119843
摘要

Deepfakes are generated using sophisticated deep-learning models to create fake images or videos. As the techniques for creating deepfakes improve, issues like defamation, impersonation, fraud, and misinformation on social media are becoming more prevalent. Existing deep learning-based deepfakes detection models are not interpretable and don't generalize well when tested across diverse deepfakes generating techniques and datasets. Therefore, the creation of reliable and effective deepfakes detection algorithms is required which are not only generalizable but also interpretable. This paper introduces a novel graph neural network-based architecture to identify hyper-realist deepfake content. Currently, very limited efforts have been done to address the problem of deepfakes detection using graph neural networks. The proposed model is based on the pyramid structure that takes advantage of multi-scale images property by extracting features with progressively smaller spatial sizes as layer depth increases. The method first sliced the image into patches, which are referred to as nodes, and then constructed a graph by connecting the nearest neighbors. To transform and exchange information between all nodes, the proposed model has two basic modules: GraphNet, which uses graph convolution layers to aggregate and update graph information, and FFN, which has linear layers for the transformation of node features. The effectiveness of the method is assessed using the diverse Deepfake Detection Challenge dataset (DFDC), FaceForensics++ (FF++), World Leaders dataset (WLRD), and the Celeb-DF. To demonstrate the generalizability of the proposed method for accurate deepfakes detection, open/close set, cross-set, and cross-corpora evaluations were also performed. The AUC values of 0.98 on FF++, 0.95 on Celeb-DF, 0.92 on DFDC, and 1.00 on most of the sets of WLRD datasets demonstrate the efficacy of the method for identifying manipulated facial images produced using various deepfakes techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA发布了新的文献求助10
1秒前
1秒前
Yy完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
大力帽子应助jyq采纳,获得10
5秒前
sdshi发布了新的文献求助10
5秒前
77发布了新的文献求助10
5秒前
chen完成签到 ,获得积分10
7秒前
7秒前
zdq10068发布了新的文献求助10
7秒前
兰瓜瓜发布了新的文献求助10
8秒前
8秒前
Ye完成签到,获得积分10
8秒前
10秒前
是榤啊完成签到 ,获得积分10
10秒前
10秒前
沉静飞雪发布了新的文献求助10
10秒前
11秒前
Rain完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
亮仔发布了新的文献求助10
13秒前
www完成签到,获得积分10
14秒前
Rubyii发布了新的文献求助10
14秒前
zzzzzzz完成签到 ,获得积分10
15秒前
15秒前
15秒前
PORCO完成签到,获得积分10
16秒前
浮游应助Zac采纳,获得10
17秒前
18秒前
英姑应助西子采纳,获得10
19秒前
19秒前
yaoyao发布了新的文献求助10
20秒前
20秒前
yijibaoli完成签到 ,获得积分10
21秒前
21秒前
及禾发布了新的文献求助10
21秒前
研友_n2Qv2L发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082