Band Gap Narrowing in a High-Entropy Spinel Oxide Semiconductor for Enhanced Oxygen Evolution Catalysis

尖晶石 氧化物 化学 带隙 过电位 催化作用 化学物理 无机化学 电负性 物理化学 材料科学 光电子学 冶金 生物化学 有机化学 电极 电化学
作者
Rowan R. Katzbaer,Francisco Marques dos Santos Vieira,Ismaïla Dabo,Zhiqiang Mao,Raymond E. Schaak
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (12): 6753-6761 被引量:112
标识
DOI:10.1021/jacs.2c12887
摘要

High-entropy oxides (HEOs), which contain five or more metal cations that are generally thought to be randomly mixed in a crystalline oxide lattice, can exhibit unique and enhanced properties, including improved catalytic performance, due to synergistic effects. Here, we show that band gap narrowing emerges in a high-entropy aluminate spinel oxide, (Fe0.2Co0.2Ni0.2Cu0.2Zn0.2)Al2O4 (A5Al2O4). The 0.9 eV band gap of A5Al2O4 is narrower than the band gaps of all parent spinel oxides. First-principles calculations for multicomponent AAl2O4 spinels indicate that the band gap narrowing arises from the broadening of the energy distribution of the 3d states due to variations in the electronegativities and crystal field splitting across the 3d transition-metal series. As a catalyst for the oxygen evolution reaction in an alkaline electrolyte, A5Al2O4 reaches a current density of 10 mA/cm2 at an overpotential of 400 mV, outperforming all of the single-metal end members at an applied potential of 1.7 V vs RHE. Catalyst deactivation occurs after 5 h at 10 mA/cm2 and is attributed, based on elemental analysis and grazing-incidence X-ray diffraction, to the formation of a passivating layer that blocks the high-entropy oxide surface. This result helps to validate that the HEO is the active catalyst. The observation of band gap narrowing in A5Al2O4 expands the scope of synergistic properties exhibited by high-entropy materials and offers insight into the question of how the electronic structure of multicomponent oxide materials can be engineered via a high-entropy approach to achieve enhanced catalytic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大饼子圆完成签到 ,获得积分10
1秒前
ww完成签到,获得积分10
1秒前
我是老大应助清脆的书桃采纳,获得10
1秒前
来咯发布了新的文献求助10
2秒前
2秒前
1234完成签到,获得积分10
3秒前
orixero应助虚幻的亦旋采纳,获得10
3秒前
cahcaiaihua发布了新的文献求助10
4秒前
5秒前
学术野猪完成签到,获得积分10
5秒前
香蕉觅云应助X1x1A0Q1采纳,获得10
5秒前
科研通AI5应助qqqq22采纳,获得10
5秒前
7秒前
7秒前
Hoxi完成签到,获得积分10
7秒前
八宝粥发布了新的文献求助10
8秒前
wayhome完成签到,获得积分20
8秒前
8秒前
羽言完成签到,获得积分10
9秒前
渊山发布了新的文献求助10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
爆米花应助科研通管家采纳,获得50
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
11秒前
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
烟花应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3679877
求助须知:如何正确求助?哪些是违规求助? 3232478
关于积分的说明 9803409
捐赠科研通 2943775
什么是DOI,文献DOI怎么找? 1614240
邀请新用户注册赠送积分活动 762115
科研通“疑难数据库(出版商)”最低求助积分说明 737223