Information theory and machine learning illuminate large‐scale metabolomic responses of Brachypodium distachyon to environmental change

远臂足 短柄草属 代谢组学 代谢组 代谢物 化学 非生物胁迫 计算生物学 植物 生物 生物化学 色谱法 基因组 基因
作者
Elizabeth H. Mahood,Alexandra Bennett,Karyn Komatsu,Lars Kruse,Vincent Lau,Maryam Rahmati Ishka,Yulin Jiang,Armando Bravo,Katherine Louie,Benjamin P. Bowen,Maria J. Harrison,Nicholas J. Provart,Olena K. Vatamaniuk,Gaurav D. Moghe
出处
期刊:Plant Journal [Wiley]
卷期号:114 (3): 463-481 被引量:1
标识
DOI:10.1111/tpj.16160
摘要

SUMMARY Plant responses to environmental change are mediated via changes in cellular metabolomes. However, <5% of signals obtained from liquid chromatography tandem mass spectrometry (LC‐MS/MS) can be identified, limiting our understanding of how metabolomes change under biotic/abiotic stress. To address this challenge, we performed untargeted LC‐MS/MS of leaves, roots, and other organs of Brachypodium distachyon (Poaceae) under 17 organ–condition combinations, including copper deficiency, heat stress, low phosphate, and arbuscular mycorrhizal symbiosis. We found that both leaf and root metabolomes were significantly affected by the growth medium. Leaf metabolomes were more diverse than root metabolomes, but the latter were more specialized and more responsive to environmental change. We found that 1 week of copper deficiency shielded the root, but not the leaf metabolome, from perturbation due to heat stress. Machine learning (ML)‐based analysis annotated approximately 81% of the fragmented peaks versus approximately 6% using spectral matches alone. We performed one of the most extensive validations of ML‐based peak annotations in plants using thousands of authentic standards, and analyzed approximately 37% of the annotated peaks based on these assessments. Analyzing responsiveness of each predicted metabolite class to environmental change revealed significant perturbations of glycerophospholipids, sphingolipids, and flavonoids. Co‐accumulation analysis further identified condition‐specific biomarkers. To make these results accessible, we developed a visualization platform on the Bio‐Analytic Resource for Plant Biology website ( https://bar.utoronto.ca/efp_brachypodium_metabolites/cgi‐bin/efpWeb.cgi ), where perturbed metabolite classes can be readily visualized. Overall, our study illustrates how emerging chemoinformatic methods can be applied to reveal novel insights into the dynamic plant metabolome and stress adaptation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助叫滚滚采纳,获得10
刚刚
1秒前
刘歌完成签到 ,获得积分10
1秒前
阿巡完成签到,获得积分10
1秒前
Chen完成签到,获得积分10
3秒前
LSH970829发布了新的文献求助10
3秒前
哈哈哈完成签到 ,获得积分10
4秒前
汤姆完成签到,获得积分10
4秒前
6秒前
6秒前
翠翠完成签到,获得积分10
7秒前
7秒前
LSH970829完成签到,获得积分10
8秒前
Lyg完成签到,获得积分20
9秒前
坚强的樱发布了新的文献求助10
9秒前
baodingning完成签到,获得积分10
10秒前
10秒前
公茂源发布了新的文献求助30
10秒前
热爱完成签到,获得积分10
11秒前
12秒前
叫滚滚发布了新的文献求助10
13秒前
星瑆心完成签到,获得积分10
13秒前
啦啦啦啦啦完成签到,获得积分10
14秒前
Lyg发布了新的文献求助10
14秒前
Dksido完成签到,获得积分10
15秒前
兰博基尼奥完成签到,获得积分10
15秒前
热情芷荷发布了新的文献求助10
17秒前
random完成签到,获得积分10
18秒前
18秒前
果果瑞宁完成签到,获得积分10
18秒前
19秒前
机智小虾米完成签到,获得积分20
19秒前
goldenfleece完成签到,获得积分10
20秒前
科研通AI2S应助学者采纳,获得10
20秒前
小杨完成签到,获得积分10
21秒前
sutharsons应助科研通管家采纳,获得30
22秒前
22秒前
Ava应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808