Information theory and machine learning illuminate large‐scale metabolomic responses of Brachypodium distachyon to environmental change

远臂足 短柄草属 代谢组学 代谢组 代谢物 化学 非生物胁迫 计算生物学 植物 生物 生物化学 色谱法 基因组 基因
作者
Elizabeth H. Mahood,Alexandra Bennett,Karyn Komatsu,Lars Kruse,Vincent Lau,Maryam Rahmati Ishka,Yulin Jiang,Armando Bravo,Katherine Louie,Benjamin P. Bowen,Maria J. Harrison,Nicholas J. Provart,Olena K. Vatamaniuk,Gaurav D. Moghe
出处
期刊:Plant Journal [Wiley]
卷期号:114 (3): 463-481 被引量:1
标识
DOI:10.1111/tpj.16160
摘要

SUMMARY Plant responses to environmental change are mediated via changes in cellular metabolomes. However, <5% of signals obtained from liquid chromatography tandem mass spectrometry (LC‐MS/MS) can be identified, limiting our understanding of how metabolomes change under biotic/abiotic stress. To address this challenge, we performed untargeted LC‐MS/MS of leaves, roots, and other organs of Brachypodium distachyon (Poaceae) under 17 organ–condition combinations, including copper deficiency, heat stress, low phosphate, and arbuscular mycorrhizal symbiosis. We found that both leaf and root metabolomes were significantly affected by the growth medium. Leaf metabolomes were more diverse than root metabolomes, but the latter were more specialized and more responsive to environmental change. We found that 1 week of copper deficiency shielded the root, but not the leaf metabolome, from perturbation due to heat stress. Machine learning (ML)‐based analysis annotated approximately 81% of the fragmented peaks versus approximately 6% using spectral matches alone. We performed one of the most extensive validations of ML‐based peak annotations in plants using thousands of authentic standards, and analyzed approximately 37% of the annotated peaks based on these assessments. Analyzing responsiveness of each predicted metabolite class to environmental change revealed significant perturbations of glycerophospholipids, sphingolipids, and flavonoids. Co‐accumulation analysis further identified condition‐specific biomarkers. To make these results accessible, we developed a visualization platform on the Bio‐Analytic Resource for Plant Biology website ( https://bar.utoronto.ca/efp_brachypodium_metabolites/cgi‐bin/efpWeb.cgi ), where perturbed metabolite classes can be readily visualized. Overall, our study illustrates how emerging chemoinformatic methods can be applied to reveal novel insights into the dynamic plant metabolome and stress adaptation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
chen发布了新的文献求助10
1秒前
1秒前
龙202221542195完成签到,获得积分10
2秒前
2秒前
lalalaaaa发布了新的文献求助10
2秒前
nini给bindandande的求助进行了留言
3秒前
艺阳完成签到,获得积分10
3秒前
炽岈发布了新的文献求助10
3秒前
4秒前
4秒前
6秒前
6秒前
占囧发布了新的文献求助10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
时冬冬应助科研通管家采纳,获得10
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
8秒前
烟花应助科研通管家采纳,获得10
8秒前
枯木逢春应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
9秒前
nk_阮发布了新的文献求助10
10秒前
10秒前
10秒前
Saven完成签到,获得积分10
11秒前
nini应助bindandande采纳,获得20
11秒前
科研那些年完成签到,获得积分10
11秒前
12秒前
贪玩千儿应助酥斯基采纳,获得10
12秒前
古夕完成签到,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
中国心血管健康与疾病报告2023(要完整的报告) 500
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3102053
求助须知:如何正确求助?哪些是违规求助? 2753346
关于积分的说明 7623434
捐赠科研通 2406027
什么是DOI,文献DOI怎么找? 1276521
科研通“疑难数据库(出版商)”最低求助积分说明 616877
版权声明 599103