A method based on link prediction for identifying set of super-spreaders in complex networks

计算机科学 数据挖掘 集合(抽象数据类型) 复杂网络 钥匙(锁) 链接(几何体) 变化(天文学) 计算机网络 计算机安全 天体物理学 物理 万维网 程序设计语言
作者
Bayan Hosseini,Farshid Veisi,Amir Sheikhahmdi
出处
期刊:Journal of Complex Networks [Oxford University Press]
卷期号:11 (2)
标识
DOI:10.1093/comnet/cnad007
摘要

Abstract Identifying a group of key nodes with enormous capability for spreading information to other network nodes is one of the favourable research topics in complex networks. In most existing methods, only the current status of the network is used for identifying and selecting the member of these groups. The main weakness of these methods is a lack of attention to the highly dynamic nature of complex networks and continuous changes in them in terms of creating and eliminating nodes and links. This matter makes the selected group have no proper performance in spreading information relative to other nodes. Therefore, this article presents a novel method for identifying spreader nodes and selecting a superior set from them. In the proposed method, the diffusion power of network nodes is calculated in the first step, and some are selected as influential nodes. In the following steps, it is tried to modify the list of selected nodes by predicting the network variation. Six datasets gathered from real-world networks are utilized for evaluation. The proposed method and other methods are tested to evaluate their spread of influence and time complexity. Results show that using the link prediction in the proposed method can enhance the spread of influence by the selected set compared to other methods so that the spread of influence in some datasets is more than 30$\%$. On the other hand, the time complexity of the proposed method confirms its utility in very large networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助20
1秒前
79发布了新的文献求助10
3秒前
溪夕er完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
止血钳完成签到 ,获得积分10
7秒前
7秒前
笑点低的荔枝完成签到,获得积分10
8秒前
陶淳完成签到,获得积分10
9秒前
ZWang完成签到,获得积分10
10秒前
10秒前
xxm发布了新的文献求助10
10秒前
脑洞疼应助孤独的巨人采纳,获得10
11秒前
11秒前
读行千万完成签到 ,获得积分10
12秒前
12秒前
14秒前
Uzma完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
iNk应助79采纳,获得20
14秒前
量子星尘发布了新的文献求助10
15秒前
惠慧完成签到,获得积分10
16秒前
16秒前
Try发布了新的文献求助30
16秒前
16秒前
深情安青应助misaka11012采纳,获得10
17秒前
许梦洁发布了新的文献求助10
17秒前
ClarkShelby发布了新的文献求助10
17秒前
18秒前
18秒前
平硕发布了新的文献求助10
18秒前
绣冬完成签到 ,获得积分10
19秒前
Pony完成签到,获得积分10
19秒前
ru发布了新的文献求助10
20秒前
浮游应助AP不会写文章采纳,获得10
20秒前
燕儿发布了新的文献求助10
21秒前
忆年慧逝完成签到,获得积分20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920907
求助须知:如何正确求助?哪些是违规求助? 4192271
关于积分的说明 13021164
捐赠科研通 3963456
什么是DOI,文献DOI怎么找? 2172475
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099310