支持向量机
召回
计算机科学
人工智能
语音识别
集合(抽象数据类型)
卷积神经网络
灵敏度(控制系统)
模式识别(心理学)
精确性和召回率
试验装置
信号(编程语言)
数据集
机器学习
心理学
认知心理学
电子工程
工程类
程序设计语言
作者
Rania Khaskhoussy,Yassine Ben Ayed
标识
DOI:10.1016/j.patrec.2023.03.011
摘要
Parkinson’s disease (PD) corresponds to one of the most common neurological diseases in the world, which is mainly manifested by motor, cognitive, and language disorders. The change in the patient’s voice is one of the most striking clinical signs and proves to be an element of interest to support the diagnosis and the assessment of PD. In this research paper, a new approach based on speech signal analysis is set forward to automatically detect Parkinson’s disease. The approach evaluates two learning techniques, namely Support Vector Machines (SVM) and Convolutional Neural Networks (CNN), to classify data obtained from speech tasks. Two input data,i.e., the raw speech signal’s values and the i-vector features of dimensions 100, 200 and 300 are extracted in this study. Eventually, an evaluation step is undertaken through the use of five evaluation metrics which are accuracy, precision, recall/sensitivity, specificity and f-score. The most pertinent obtained results for a test dataset composed of 28 participants are recorded as follows: an accuracy of 100%, precision of 0.99, recall/sensitivity of 0.98, specificity of 0.96 and f-score of 0.98. These findings corroborate that our approach can help in terms of PD detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI