Modelling of the impact of stress concentration on permeability in porous medium based on machine learning method

磁导率 材料科学 多孔介质 压力(语言学) 压缩性 多孔性 复合材料 机械 化学 物理 生物化学 语言学 哲学
作者
Hai Qu,Yan Peng,Jiaxi Huang,Zhejun Pan,Fujian Zhou
标识
DOI:10.1016/j.geoen.2023.211655
摘要

The behavior of stress-dependent permeability has been an important research topic for oil/gas production. The majority of permeability models for porous media have been proposed based on porelasticity theory. The matrix is assumed to be thoroughly separated by pores in the models and the pore compressibility is used to represent the stress-dependent behavior of permeability. However, matrix could not be separated by pores thoroughly and the impact of stress concentration around pores on pore deformation and permeability should be considered. In this study, the impact of stress concentration on permeability was illustrated by numerical simulation. In addition, the mechanism of stress-dependent behavior of permeability was analyzed. Since it is difficult to establish theoretical permeability models involving stress concentration effect caused by the complex pore structure, machine learning was applied in this paper. One of the four capable machine learning methods was selected and the corresponding machine learning model was validated through both numerical and experimental data. Moreover, the different performance of permeability prediction between the conventional model and the proposed one was discussed. The results indicate that the stress-dependent behavior of permeability results from stress concentration rather than the pore bulk modulus. Therefore, the stress-dependent permeability model with the impact of stress concentration is more accurate, compared with the numerical results and experimental data. In addition, the stress concentration increases the pore deformation and induces strong stress-dependent behavior of permeability, which is sensitive to pore shapes and related to the pore shape complexity. Specifically, the impacts of pores with different shapes on permeability are similar if the complexity index of pore shape is under 0.6 or over 0.9 and distinct for the value in between. Furthermore, the alteration in the magnitude and orientation of the stress affects stress dependency of permeability, which increases with the pore shape complexity. If the complexity index of pore shape exceeds 0.96, the alteration of permeability induced by change in stress orientation can be over 64%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然水绿发布了新的文献求助10
1秒前
chunning完成签到,获得积分10
2秒前
迅速苡完成签到,获得积分10
3秒前
3秒前
5秒前
思源应助xia采纳,获得10
5秒前
龙大王完成签到 ,获得积分10
7秒前
7秒前
科研通AI6应助不止夏天采纳,获得30
8秒前
8秒前
8秒前
柔弱白羊发布了新的文献求助10
10秒前
传奇3应助Lengbo采纳,获得10
10秒前
温暖的定格完成签到,获得积分10
11秒前
monkey发布了新的文献求助10
11秒前
华国锋应助老实凝蕊采纳,获得20
11秒前
子阅发布了新的文献求助10
12秒前
12秒前
MM完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
wwwjy完成签到 ,获得积分10
13秒前
延陵君应助galvin采纳,获得30
14秒前
realrrr完成签到 ,获得积分10
14秒前
14秒前
Ava应助啦啦啦啦德玛西亚采纳,获得10
15秒前
霸气映之完成签到,获得积分10
15秒前
yurh完成签到,获得积分10
15秒前
完美世界应助monkey采纳,获得10
16秒前
科研通AI6应助tt825采纳,获得10
16秒前
17秒前
叶子发布了新的文献求助20
18秒前
大木头发布了新的文献求助10
19秒前
xiaoya发布了新的文献求助10
19秒前
lxy完成签到,获得积分10
20秒前
20秒前
21秒前
Hello应助shipcap采纳,获得10
21秒前
Ava应助wuxunxun2015采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812