Molecular Magnetic Resonance Imaging of Aneurysmal Inflammation Using a Redox Active Iron Complex

磁共振成像 炎症 动脉瘤 医学 核医学 病理 放射科 核磁共振 内科学 物理
作者
R King,Matthew J. Gounis,Edward M. Schmidt,Anita M. Leporati,Eric M. Gale,Alexei A. Bogdanov
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:58 (9): 656-662 被引量:1
标识
DOI:10.1097/rli.0000000000000960
摘要

Inflammation plays a key role in driving brain aneurysmal instability and rupture, but clinical tools to noninvasively differentiate between inflamed and stable aneurysms are lacking. We hypothesize that imaging oxidative changes in the aneurysmal microenvironment driven by myeloid inflammatory cells may represent a noninvasive biomarker to evaluate rupture risk. In this study, we performed initial evaluation of the oxidatively activated probe Fe-PyC3A as a tool for magnetic resonance imaging (MRI) of inflammation in a rabbit model of saccular aneurysm.The difference in longitudinal relaxivity ( r1 ) in reduced and oxidized states of Fe-PyC3A was measured in water and blood plasma phantoms at 3 T. A rabbit saccular aneurysm model was created by endovascular intervention/elastinolysis with subsequent decellularization in situ. Rabbits were imaged at 4 weeks (n = 4) or 12 weeks (n = 4) after aneurysmal induction, when luminal levels of inflammation reflected by the presence of myeloperoxidase positive cells are relatively high and low, respectively, using a 3 T clinical scanner. Both groups were imaged dynamically using a 2-dimensional T1-weighted fast field echo pulse MRI sequence before and up to 4 minutes postinjection of Fe-PyC3A. Dynamic imaging was then repeated after an injection of gadobutrol (0.1 mmol/kg) as negative control probe. Rabbits from the 12-week aneurysm group were also imaged before and 20 minutes and 3 hours after injection of Fe-PyC3A using an axial respiratory gated turbo-spin echo (TSE) pulse sequence with motion-sensitized driven equilibrium (MSDE) preparation. The MSDE/TSE imaging was repeated before, immediately after dynamic acquisition (20 minutes postinjection), and 3 hours after injection of gadobutrol. Aneurysmal enhancement ratios (ERs) were calculated by dividing the postinjection aneurysm versus skeletal muscle contrast ratio by the preinjection contrast ratio. After imaging, the aneurysms were excised and inflammatory infiltrate was characterized by fluorometric detection of myeloperoxidase activity and calprotectin immunostaining, respectively.In vitro relaxometry showed that oxidation of Fe-PyC3A by hydrogen peroxide resulted in a 15-fold increase of r1 at 3 T. Relaxometry in the presence of blood plasma showed no more than a 10% increase of r1 , indicating the absence of strong interaction of Fe-PyC3A with plasma proteins. Dynamic imaging with Fe-PyC3A generated little signal enhancement within the blood pool or adjacent muscle but did generate a transient increase in aneurysmal ER that was significantly greater 4 weeks versus 12 weeks after aneurysm induction (1.6 ± 0.30 vs 1.2 ± 0.03, P < 0.05). Dynamic imaging with gadobutrol generated strong aneurysmal enhancement, but also strong enhancement of the blood and muscle resulting in smaller relative ER change. In the 12-week group of rabbits, MSDE/TSE imaging showed that ER values measured immediately after dynamic MRI (20 minutes postinjection) were significantly higher ( P < 0.05) in the case of Fe-PyC3A (1.25 ± 0.06) than for gadobutrol injection (1.03 ± 0.03). Immunohistochemical corroboration using anticalprotectin antibody showed that leukocyte infiltration into the vessel walls and luminal thrombi was significantly higher in the 4-week group versus 12-week aneurysms (123 ± 37 vs 18 ± 7 cells/mm 2 , P < 0.05).Magnetic resonance imaging using Fe-PyC3A injection in dynamic or delayed acquisition modes was shown to generate a higher magnetic resonance signal enhancement in aneurysms that exhibit higher degree of inflammation. The results of our pilot experiments support further evaluation of MRI using Fe-PyC3A as a noninvasive marker of aneurysmal inflammation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分20
1秒前
好玩和有趣完成签到,获得积分10
1秒前
脂蛋白抗原完成签到,获得积分10
1秒前
1秒前
1秒前
虫虫完成签到,获得积分10
1秒前
2秒前
2秒前
喜悦的向珊完成签到,获得积分10
2秒前
2秒前
科研狗发布了新的文献求助10
2秒前
清爽绿凝发布了新的文献求助10
2秒前
2秒前
大个应助佰斯特威采纳,获得10
3秒前
JingP完成签到,获得积分10
4秒前
赘婿应助yuyu采纳,获得10
4秒前
蔡翌文完成签到 ,获得积分10
4秒前
crescendo完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
plumcute完成签到,获得积分10
5秒前
cybbbbbb发布了新的文献求助10
6秒前
名丿完成签到,获得积分10
6秒前
6秒前
网上飞完成签到,获得积分10
6秒前
小香草发布了新的文献求助10
6秒前
xiaoziyi666发布了新的文献求助10
7秒前
7秒前
桃子发布了新的文献求助10
8秒前
正在输入中应助eee采纳,获得20
8秒前
屁王发布了新的文献求助10
8秒前
wwwww发布了新的文献求助10
8秒前
9秒前
QLLW完成签到,获得积分10
9秒前
9秒前
风评完成签到,获得积分10
9秒前
MADKAI发布了新的文献求助10
9秒前
Zhong发布了新的文献求助10
10秒前
wwwstt完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740