支持向量机
随机森林
抗菌肽
特征选择
机器学习
人工智能
抗菌剂
细菌
计算机科学
肽
逻辑回归
计算生物学
生物
生物化学
微生物学
遗传学
作者
Hamid Teimouri,Angela Medvedeva,Anatoly B. Kolomeisky
标识
DOI:10.1021/acs.jcim.2c01551
摘要
There are several classes of short peptide molecules, known as antimicrobial peptides (AMPs), which are produced during the immune responses of living organisms against various infections. In recent years, substantial progress has been achieved in applying machine-learning methods to predict the activities of AMPs against bacteria. In most investigated cases, however, the outcome is not bacterium-specific since the specific features of bacteria, such as chemical composition and structure of membranes, are not considered. To overcome this problem, we developed a new computational approach that allowed us to train several supervised machine-learning models using a specific set of data associated with peptides targeting E. coli bacteria. LASSO regression and Support Vector Machine techniques have been utilized to select, among more than 1500 physicochemical descriptors, the most important features that can be used to classify a peptide as antimicrobial or ineffective against E. coli. We then performed the classification of active versus inactive AMPs using the Support Vector classifiers, Logistic Regression, and Random Forest methods. This computational study allows us to make recommendations of how to design more efficient antibacterial drug therapies.
科研通智能强力驱动
Strongly Powered by AbleSci AI