阳极
法拉第效率
电解质
电镀(地质)
石墨
电化学
材料科学
化学工程
极化(电化学)
化学
冶金
电极
工程类
物理化学
地球物理学
地质学
作者
Xinyang Yue,Jing Zhang,Yongteng Dong,Yuanmao Chen,Zhangqin Shi,Xuejiao Xu,Xun‐Lu Li,Zheng Liang
标识
DOI:10.1002/anie.202302285
摘要
Abstract The difficulties to identify the rate‐limiting step cause the lithium (Li) plating hard to be completely avoided on graphite anodes during fast charging. Therefore, Li plating regulation and morphology control are proposed to address this issue. Specifically, a Li plating‐reversible graphite anode is achieved via a localized high‐concentration electrolyte (LHCE) to successfully regulate the Li plating with high reversibility over high‐rate cycling. The evolution of solid electrolyte interphase (SEI) before and after Li plating is deeply investigated to explore the interaction between the lithiation behavior and electrochemical interface polarization. Under the fact that Li plating contributes 40 % of total lithiation capacity, the stable LiF‐rich SEI renders the anode a higher average Coulombic efficiency (99.9 %) throughout 240 cycles and a 99.95 % reversibility of Li plating. Consequently, a self‐made 1.2‐Ah LiNi 0.5 Mn 0.3 Co 0.2 O 2 | graphite pouch cell delivers a competitive retention of 84.4 % even at 7.2 A (6 C) after 150 cycles. This work creates an ingenious bridge between the graphite anode and Li plating, for realizing the high‐performance fast‐charging batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI