Reconstructing cloud-contaminated NDVI images with SAR-Optical fusion using spatio-temporal partitioning and multiple linear regression

遥感 合成孔径雷达 计算机科学 传感器融合 卫星 线性回归 深度学习 航程(航空) 归一化差异植被指数 人工智能 地理 地质学 机器学习 气候变化 工程类 航空航天工程 复合材料 材料科学 海洋学
作者
Yongjing Mao,Thomas G. Van Niel,Tim R. McVicar
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:198: 115-139 被引量:15
标识
DOI:10.1016/j.isprsjprs.2023.03.003
摘要

Optical satellite imagery is an important Earth observation data source, yet when clouds are present, they provide limited utility for land surface applications. Synthetic Aperture Radar (SAR)-Optical data fusion models predict the missing reflectance values through the correlation between optical images and cloud-insensitive SAR images often using deep learning to train the model. However, most existing SAR-Optical data fusion methods did not incorporate temporal correlation optimally as they were not trained on dense and localized time-series data. Herein, we develop a new SAR-Optical data fusion method that incorporated spatial, temporal, and cross-data-source correlation in the same framework. The method uses spatio-temporal (ST) partitioning and pixel-wise multiple linear regression (MLR) and is named ST-MLR. The parsimonious structure of ST-MLR provides training-efficient model development, enabling the incorporation of full spatio-temporal information for a specific site. ST-MLR was validated with NDVI as the target in seven sites across a wide range of environments and landcovers. Both quantitative and qualitative results demonstrated the potential of ST-MLR to reproduce the target variable accurately with respect to both spatial and temporal dynamics. Although ST-MLR had relatively less accuracy when reconstructing multi-band images than when reconstructing the NDVI, its results were comparable to existing reconstruction methods in this regard. Compared with traditional optical image reconstruction methods and deep learning SAR-Optical fusion methods, ST-MLR is a simple, fast and reasonably accurate model, especially when filling large spatial gaps. ST-MLR is accessible to anyone regardless of compute capability as it can be implemented on Google Earth Engine — a public cloud computing platform. ST-MLR can be used as a benchmark to evaluate the performance of more complicated models such as those based on deep learning. The ST-MLR code is publicly available at https://github.com/yongjingmao/SAR-OPT_fusion_GEE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
成就紫真完成签到,获得积分10
2秒前
崔win发布了新的文献求助10
2秒前
RC_Wang应助猛男采纳,获得10
2秒前
2秒前
咚咚完成签到,获得积分10
2秒前
3秒前
3秒前
Owen应助JefreeCN采纳,获得10
3秒前
猪嗝铁铁发布了新的文献求助30
3秒前
oneonedog发布了新的文献求助10
3秒前
4秒前
忐忑的骁发布了新的文献求助10
4秒前
wjx发布了新的文献求助10
4秒前
一念初见完成签到,获得积分10
4秒前
小黑哥发布了新的文献求助10
4秒前
一锅炖不下完成签到 ,获得积分10
5秒前
5秒前
英俊的铭应助泯珉采纳,获得10
6秒前
6秒前
852应助aixue采纳,获得10
6秒前
脑洞疼应助盖斯的可言采纳,获得10
6秒前
xhsz1111发布了新的文献求助10
7秒前
笨笨松发布了新的文献求助10
7秒前
wanci应助田田采纳,获得30
7秒前
淡定成风发布了新的文献求助10
8秒前
苏卿应助成就紫真采纳,获得10
9秒前
夏尔完成签到,获得积分10
9秒前
倦梦还完成签到,获得积分10
9秒前
Xiaohu完成签到,获得积分10
10秒前
11秒前
11秒前
jianxin发布了新的文献求助10
11秒前
热心路人应助等待的觅珍采纳,获得200
11秒前
小黑哥完成签到,获得积分20
12秒前
科研通AI5应助冷酷沛柔采纳,获得10
12秒前
忐忑的骁完成签到,获得积分20
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564065
求助须知:如何正确求助?哪些是违规求助? 3137276
关于积分的说明 9421653
捐赠科研通 2837658
什么是DOI,文献DOI怎么找? 1559942
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717215