Research on Ship Detection Method of Optical Remote Sensing Image Based on Deep Learning

计算机科学 深度学习 目标检测 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 遥感 地质学
作者
Lixin Zhang,Hongtao Yin
标识
DOI:10.1109/icsmd57530.2022.10058312
摘要

At present, the ship detection of optical remote sensing images based on deep learning has made great progress. However, due to the different use scenarios and specific tasks, how to select an appropriate algorithm according to the characteristics of the target and the target priority, so that achieve the detection goal while consider the detection accuracy and speed, still requires relevant research. In this paper, ship detection methods for optical remote sensing images are studied based on deep learning. First, to meet the needs of ship detection research, according to the characteristics of target size and type, datasets of medium and large ships and small target ships are made, and model training and testing are conducted based on Faster R-CNN, YOLOv4, and SSD algorithms respectively. The actual detection performance of the three algorithms under different ship sizes is obtained. The results show that for medium and large targets, Faster R-CNN has the highest precision, the next is YOLOv4, and SSD is the lowest. The detection speed is that SSD is the fastest, the next is YOLOv4, Faster R-CNN is the slowest. For small target ship detection, YOLOv4 has the best detection accuracy and SSD has the fastest detection speed. Faster R-CNN is not as accurate and fast as the other two algorithms. In addition, for different type ships, the detection results of different algorithms also have some differences. In practical applications, different methods should be used to achieve detection by comprehensively considering such factors as target size, target priority, detection accuracy and speed requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
雪梅完成签到 ,获得积分10
1秒前
2秒前
Shawna完成签到,获得积分10
2秒前
坦呐完成签到,获得积分20
2秒前
dreamvssnow完成签到 ,获得积分10
3秒前
QixuGuo发布了新的文献求助10
3秒前
古风欧完成签到,获得积分10
3秒前
公子渔发布了新的文献求助10
3秒前
4秒前
Hello应助哈哈哈哈哈哈采纳,获得10
4秒前
ZZZZZZZZF应助摸鱼咯采纳,获得10
5秒前
wanci应助fjh采纳,获得10
6秒前
6秒前
小蘑菇应助木犀板板采纳,获得10
7秒前
范莉完成签到,获得积分10
8秒前
Ha放狗小Pi完成签到,获得积分10
9秒前
听懂的同学标个6完成签到,获得积分10
9秒前
自信的德天完成签到,获得积分10
11秒前
LiZH完成签到,获得积分10
11秒前
Xianao发布了新的文献求助10
12秒前
miuwu发布了新的文献求助10
14秒前
单莫人完成签到,获得积分10
16秒前
希望天下0贩的0应助Hans采纳,获得10
16秒前
张祖成完成签到,获得积分10
19秒前
清新的问枫完成签到,获得积分10
19秒前
19秒前
19秒前
wahaha完成签到,获得积分10
20秒前
勤奋的大米完成签到,获得积分10
21秒前
Ava应助听懂的同学标个6采纳,获得10
21秒前
23秒前
23秒前
后会无期完成签到,获得积分10
23秒前
yuanying发布了新的文献求助10
27秒前
又欠发布了新的文献求助10
27秒前
ZD发布了新的文献求助10
28秒前
思源应助咕咕采纳,获得10
29秒前
旺旺发布了新的文献求助30
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289246
求助须知:如何正确求助?哪些是违规求助? 4440938
关于积分的说明 13825965
捐赠科研通 4323204
什么是DOI,文献DOI怎么找? 2373053
邀请新用户注册赠送积分活动 1368481
关于科研通互助平台的介绍 1332391