Research on Ship Detection Method of Optical Remote Sensing Image Based on Deep Learning

计算机科学 深度学习 目标检测 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 遥感 地质学
作者
Lixin Zhang,Hongtao Yin
标识
DOI:10.1109/icsmd57530.2022.10058312
摘要

At present, the ship detection of optical remote sensing images based on deep learning has made great progress. However, due to the different use scenarios and specific tasks, how to select an appropriate algorithm according to the characteristics of the target and the target priority, so that achieve the detection goal while consider the detection accuracy and speed, still requires relevant research. In this paper, ship detection methods for optical remote sensing images are studied based on deep learning. First, to meet the needs of ship detection research, according to the characteristics of target size and type, datasets of medium and large ships and small target ships are made, and model training and testing are conducted based on Faster R-CNN, YOLOv4, and SSD algorithms respectively. The actual detection performance of the three algorithms under different ship sizes is obtained. The results show that for medium and large targets, Faster R-CNN has the highest precision, the next is YOLOv4, and SSD is the lowest. The detection speed is that SSD is the fastest, the next is YOLOv4, Faster R-CNN is the slowest. For small target ship detection, YOLOv4 has the best detection accuracy and SSD has the fastest detection speed. Faster R-CNN is not as accurate and fast as the other two algorithms. In addition, for different type ships, the detection results of different algorithms also have some differences. In practical applications, different methods should be used to achieve detection by comprehensively considering such factors as target size, target priority, detection accuracy and speed requirements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
樱桃窝窝头完成签到,获得积分10
2秒前
fisher完成签到,获得积分10
4秒前
于冰清发布了新的文献求助10
5秒前
我是老大应助王王王王采纳,获得10
5秒前
小王完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
珍珍完成签到,获得积分10
7秒前
所所应助尊敬的琳采纳,获得10
7秒前
湫栗发布了新的文献求助30
8秒前
我是老大应助君猪采纳,获得10
9秒前
白三烯完成签到,获得积分10
9秒前
苹果大侠完成签到 ,获得积分10
10秒前
msd2phd完成签到,获得积分10
10秒前
果粒橙980完成签到,获得积分10
12秒前
啊强完成签到 ,获得积分10
12秒前
JamesPei应助hai采纳,获得10
15秒前
只想摆烂完成签到 ,获得积分10
18秒前
zzeru21发布了新的文献求助10
19秒前
suai完成签到,获得积分10
22秒前
陶陶关注了科研通微信公众号
22秒前
25秒前
郭子啊完成签到 ,获得积分10
25秒前
25秒前
土木搬砖法律完成签到,获得积分10
26秒前
SciGPT应助di采纳,获得10
27秒前
贪玩的墨镜完成签到,获得积分10
27秒前
28秒前
30秒前
30秒前
不是山谷完成签到,获得积分10
31秒前
废羊羊完成签到 ,获得积分10
31秒前
李博完成签到,获得积分10
32秒前
33秒前
小王发布了新的文献求助10
34秒前
34秒前
量子星尘发布了新的文献求助10
34秒前
机智向松完成签到,获得积分10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793410
求助须知:如何正确求助?哪些是违规求助? 5748800
关于积分的说明 15485602
捐赠科研通 4920321
什么是DOI,文献DOI怎么找? 2648821
邀请新用户注册赠送积分活动 1596215
关于科研通互助平台的介绍 1550789