Research on Ship Detection Method of Optical Remote Sensing Image Based on Deep Learning

计算机科学 深度学习 目标检测 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 遥感 地质学
作者
Lixin Zhang,Hongtao Yin
标识
DOI:10.1109/icsmd57530.2022.10058312
摘要

At present, the ship detection of optical remote sensing images based on deep learning has made great progress. However, due to the different use scenarios and specific tasks, how to select an appropriate algorithm according to the characteristics of the target and the target priority, so that achieve the detection goal while consider the detection accuracy and speed, still requires relevant research. In this paper, ship detection methods for optical remote sensing images are studied based on deep learning. First, to meet the needs of ship detection research, according to the characteristics of target size and type, datasets of medium and large ships and small target ships are made, and model training and testing are conducted based on Faster R-CNN, YOLOv4, and SSD algorithms respectively. The actual detection performance of the three algorithms under different ship sizes is obtained. The results show that for medium and large targets, Faster R-CNN has the highest precision, the next is YOLOv4, and SSD is the lowest. The detection speed is that SSD is the fastest, the next is YOLOv4, Faster R-CNN is the slowest. For small target ship detection, YOLOv4 has the best detection accuracy and SSD has the fastest detection speed. Faster R-CNN is not as accurate and fast as the other two algorithms. In addition, for different type ships, the detection results of different algorithms also have some differences. In practical applications, different methods should be used to achieve detection by comprehensively considering such factors as target size, target priority, detection accuracy and speed requirements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马哥发布了新的文献求助10
刚刚
Hello应助一花一叶采纳,获得10
刚刚
1秒前
传奇3应助HHHHTTTT采纳,获得10
1秒前
zxx发布了新的文献求助10
1秒前
1秒前
午夜咖啡香完成签到,获得积分10
2秒前
风清扬发布了新的文献求助10
2秒前
杨杨发布了新的文献求助10
3秒前
田博文应助yangyu采纳,获得10
3秒前
yyyyyyyyyyyiiii完成签到,获得积分10
4秒前
研友_VZG7GZ应助木流留马采纳,获得10
4秒前
zz完成签到,获得积分10
4秒前
qll完成签到,获得积分10
4秒前
4秒前
共享精神应助耍酷含芙采纳,获得10
5秒前
肖望完成签到,获得积分20
5秒前
小蘑菇应助团团团采纳,获得30
5秒前
DG完成签到,获得积分10
5秒前
张光光完成签到,获得积分10
6秒前
汉堡包应助李木子采纳,获得10
6秒前
无聊的饼干完成签到,获得积分10
6秒前
斯文雪青完成签到,获得积分10
6秒前
安静的迎南完成签到,获得积分10
6秒前
Russell发布了新的文献求助10
6秒前
7秒前
香蕉觅云应助OFF采纳,获得10
7秒前
小马哥完成签到,获得积分10
7秒前
好困发布了新的文献求助30
7秒前
阳光灿烂完成签到,获得积分10
7秒前
欧贤书发布了新的文献求助20
8秒前
英姑应助qll采纳,获得20
8秒前
彭于晏应助花火妖妖采纳,获得10
8秒前
8秒前
芥末完成签到,获得积分10
8秒前
枯藤老柳树完成签到,获得积分10
8秒前
yummy完成签到,获得积分10
9秒前
zxx完成签到,获得积分20
9秒前
9秒前
舒服的尔丝完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510498
求助须知:如何正确求助?哪些是违规求助? 4605134
关于积分的说明 14492967
捐赠科研通 4540342
什么是DOI,文献DOI怎么找? 2487940
邀请新用户注册赠送积分活动 1470152
关于科研通互助平台的介绍 1442632