已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on Ship Detection Method of Optical Remote Sensing Image Based on Deep Learning

计算机科学 深度学习 目标检测 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 遥感 地质学
作者
Lixin Zhang,Hongtao Yin
标识
DOI:10.1109/icsmd57530.2022.10058312
摘要

At present, the ship detection of optical remote sensing images based on deep learning has made great progress. However, due to the different use scenarios and specific tasks, how to select an appropriate algorithm according to the characteristics of the target and the target priority, so that achieve the detection goal while consider the detection accuracy and speed, still requires relevant research. In this paper, ship detection methods for optical remote sensing images are studied based on deep learning. First, to meet the needs of ship detection research, according to the characteristics of target size and type, datasets of medium and large ships and small target ships are made, and model training and testing are conducted based on Faster R-CNN, YOLOv4, and SSD algorithms respectively. The actual detection performance of the three algorithms under different ship sizes is obtained. The results show that for medium and large targets, Faster R-CNN has the highest precision, the next is YOLOv4, and SSD is the lowest. The detection speed is that SSD is the fastest, the next is YOLOv4, Faster R-CNN is the slowest. For small target ship detection, YOLOv4 has the best detection accuracy and SSD has the fastest detection speed. Faster R-CNN is not as accurate and fast as the other two algorithms. In addition, for different type ships, the detection results of different algorithms also have some differences. In practical applications, different methods should be used to achieve detection by comprehensively considering such factors as target size, target priority, detection accuracy and speed requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助开心的耳机采纳,获得10
1秒前
我是老大应助二十八化生采纳,获得10
2秒前
Mcl关注了科研通微信公众号
2秒前
Oculus完成签到 ,获得积分10
4秒前
Hao完成签到,获得积分10
5秒前
羔子完成签到,获得积分10
5秒前
8秒前
Criminology34给提拉米草的求助进行了留言
8秒前
柯尔丝完成签到 ,获得积分10
8秒前
wgm1104发布了新的社区帖子
9秒前
雾气海蓝完成签到 ,获得积分10
12秒前
简历发布了新的文献求助10
13秒前
二十八化生应助文件撤销了驳回
14秒前
桐桐应助hzy采纳,获得10
15秒前
16秒前
喜哦肖应助adkins采纳,获得10
17秒前
20秒前
Yulanda完成签到 ,获得积分10
22秒前
dynamoo应助安全采纳,获得10
23秒前
28秒前
29秒前
29秒前
30秒前
KAS_LEE完成签到,获得积分10
31秒前
大聪明发布了新的文献求助10
31秒前
浮游应助小钥匙采纳,获得10
31秒前
31秒前
为什么不学习完成签到,获得积分10
31秒前
平常寒烟完成签到,获得积分10
33秒前
sponge发布了新的文献求助10
33秒前
Cola发布了新的文献求助10
34秒前
35秒前
hzy发布了新的文献求助10
36秒前
adkins完成签到,获得积分10
36秒前
36秒前
英俊尔曼发布了新的文献求助10
38秒前
相宜完成签到,获得积分10
38秒前
思源应助lian采纳,获得10
41秒前
41秒前
周墨完成签到 ,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5417972
求助须知:如何正确求助?哪些是违规求助? 4533706
关于积分的说明 14141889
捐赠科研通 4449966
什么是DOI,文献DOI怎么找? 2441033
邀请新用户注册赠送积分活动 1432800
关于科研通互助平台的介绍 1410013