Research on Ship Detection Method of Optical Remote Sensing Image Based on Deep Learning

计算机科学 深度学习 目标检测 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 遥感 地质学
作者
Lixin Zhang,Hongtao Yin
标识
DOI:10.1109/icsmd57530.2022.10058312
摘要

At present, the ship detection of optical remote sensing images based on deep learning has made great progress. However, due to the different use scenarios and specific tasks, how to select an appropriate algorithm according to the characteristics of the target and the target priority, so that achieve the detection goal while consider the detection accuracy and speed, still requires relevant research. In this paper, ship detection methods for optical remote sensing images are studied based on deep learning. First, to meet the needs of ship detection research, according to the characteristics of target size and type, datasets of medium and large ships and small target ships are made, and model training and testing are conducted based on Faster R-CNN, YOLOv4, and SSD algorithms respectively. The actual detection performance of the three algorithms under different ship sizes is obtained. The results show that for medium and large targets, Faster R-CNN has the highest precision, the next is YOLOv4, and SSD is the lowest. The detection speed is that SSD is the fastest, the next is YOLOv4, Faster R-CNN is the slowest. For small target ship detection, YOLOv4 has the best detection accuracy and SSD has the fastest detection speed. Faster R-CNN is not as accurate and fast as the other two algorithms. In addition, for different type ships, the detection results of different algorithms also have some differences. In practical applications, different methods should be used to achieve detection by comprehensively considering such factors as target size, target priority, detection accuracy and speed requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助lingck采纳,获得10
1秒前
Hxido发布了新的文献求助10
2秒前
蔺不平发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
安详的白云完成签到 ,获得积分10
7秒前
xt完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
上官若男应助感动背包采纳,获得10
10秒前
13秒前
Re发布了新的文献求助10
13秒前
白笑石发布了新的文献求助10
14秒前
melody发布了新的文献求助10
17秒前
烟花应助FFFFF采纳,获得10
18秒前
星辰大海应助甜甜小蘑菇采纳,获得10
18秒前
20秒前
往返发布了新的文献求助10
20秒前
平常的仙人掌完成签到,获得积分10
21秒前
Re完成签到,获得积分10
22秒前
脆弱大拇哥完成签到,获得积分10
23秒前
23秒前
25秒前
铁观音发布了新的文献求助10
27秒前
陶征应助淡淡的元灵采纳,获得10
28秒前
29秒前
沉默的皮卡丘完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
30秒前
orixero应助脆弱大拇哥采纳,获得10
31秒前
sdniuidifod发布了新的文献求助10
32秒前
科研通AI2S应助椒盐鲨鱼皮采纳,获得10
35秒前
CAOHOU应助veronicaaaa采纳,获得10
36秒前
37秒前
38秒前
今后应助杜熙凤采纳,获得10
41秒前
FFFFF发布了新的文献求助10
41秒前
搜集达人应助hhh采纳,获得10
44秒前
44秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167