脱氧核酶
催化作用
化学
血红素
G-四倍体
过氧化氢
光化学
离子
卟啉
基质(水族馆)
氢键
结晶学
无机化学
组合化学
立体化学
血红素
分子
有机化学
DNA
酶
地质学
海洋学
生物化学
作者
Wenqin Zhou,Rui Lai,Yu Cheng,Yu Bao,Wenhui Miao,Xupeng Cao,Guoqing Jia,Guohui Li,Can Li
标识
DOI:10.1021/acscatal.2c05905
摘要
Dimeric G-quadruplex (G4)/Hemin has been employed to expand the catalytic repertoire of nucleic acid. Herein, we aim to understand the effect of NH4+ ions on the catalytic behavior of the dimeric G4/Hemin DNAzyme. Through EPR and UV–vis spectroscopy, we found that NH4+ ions resulted in more accumulation of compound I (Cpd I, Fe (IV)═O•+) in the dimeric DNAzyme process. Furthermore, molecular dynamics simulations showed that NH4+ ions could be present in the catalytic chamber to stabilize the dimeric G4 while interacting with the substrate hydrogen peroxide by hydrogen bonds. The interaction between the NH4+ ion and H2O2 contributes to a better stability of intermediate and transition-state species involved in the catalytic formation of Cpd I. Specifically, NH4+ ions facilitate the O–O bond breaking of iron–porphyrin-bound H2O2 (the rate-limiting step). With four available hydrogen atoms, a NH4+ ion can be an effective "additive" to promote the activity of the dimeric DNAzyme. The results provide the strategy for adjusting the DNAzyme by transition-state stabilization by hydrogen bonding networks. Our data shed light on the mechanistic clues on the design and application of G4-based catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI