Regional perception and multi-scale feature fusion network for cardiac segmentation

计算机科学 比例(比率) 分割 感知 人工智能 融合 模式识别(心理学) 计算机视觉 特征(语言学) 地图学 地理 心理学 神经科学 语言学 哲学
作者
Chenggang Lu,Jinli Yuan,Kewen Xia,Zhitao Guo,Muxuan Chen,Hengyong Yu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (10): 105003-105003 被引量:6
标识
DOI:10.1088/1361-6560/acc71f
摘要

Objective.Cardiovascular disease (CVD) is a group of diseases affecting cardiac and blood vessels, and short-axis cardiac magnetic resonance (CMR) images are considered the gold standard for the diagnosis and assessment of CVD. In CMR images, accurate segmentation of cardiac structures (e.g. left ventricle) assists in the parametric quantification of cardiac function. However, the dynamic beating of the heart renders the location of the heart with respect to other tissues difficult to resolve, and the myocardium and its surrounding tissues are similar in grayscale. This makes it challenging to accurately segment the cardiac images. Our goal is to develop a more accurate CMR image segmentation approach.Approach.In this study, we propose a regional perception and multi-scale feature fusion network (RMFNet) for CMR image segmentation. We design two regional perception modules, a window selection transformer (WST) module and a grid extraction transformer (GET) module. The WST module introduces a window selection block to adaptively select the window of interest to perceive information, and a windowed transformer block to enhance global information extraction within each feature window. The WST module enhances the network performance by improving the window of interest. The GET module grids the feature maps to decrease the redundant information in the feature maps and enhances the extraction of latent feature information of the network. The RMFNet further introduces a novel multi-scale feature extraction module to improve the ability to retain detailed information.Main results.The RMFNet is validated with experiments on three cardiac data sets. The results show that the RMFNet outperforms other advanced methods in overall performance. The RMFNet is further validated for generalizability on a multi-organ data set. The results also show that the RMFNet surpasses other comparison methods.Significance.Accurate medical image segmentation can reduce the stress of radiologists and play an important role in image-guided clinical procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaoziyi666发布了新的文献求助10
刚刚
muomuo完成签到,获得积分10
刚刚
刚刚
eli完成签到,获得积分10
1秒前
ZL发布了新的文献求助10
1秒前
Jason完成签到,获得积分10
1秒前
2秒前
2秒前
朴实的乐天完成签到,获得积分10
2秒前
3秒前
towerman发布了新的文献求助10
3秒前
科研通AI5应助愤怒的寄琴采纳,获得10
3秒前
搜集达人应助起司嗯采纳,获得30
3秒前
jjgod完成签到,获得积分10
4秒前
kilig完成签到 ,获得积分10
4秒前
4秒前
good发布了新的文献求助10
4秒前
可靠从云发布了新的文献求助30
4秒前
安静的从安完成签到,获得积分10
5秒前
了了完成签到,获得积分10
5秒前
烟花应助phylicia采纳,获得10
6秒前
讲你ing发布了新的文献求助10
6秒前
7秒前
小西发布了新的文献求助30
7秒前
行不通完成签到,获得积分10
7秒前
小赟发布了新的文献求助20
8秒前
Ava应助爱学习采纳,获得10
8秒前
8秒前
wary发布了新的文献求助10
8秒前
橘子完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
了了发布了新的文献求助10
11秒前
11秒前
ZQY完成签到 ,获得积分10
11秒前
斯文败类应助正直亦旋采纳,获得10
13秒前
科研通AI5应助jijahui采纳,获得80
14秒前
Jenny应助背后的诺言采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762