Regional perception and multi-scale feature fusion network for cardiac segmentation

计算机科学 比例(比率) 分割 感知 人工智能 融合 模式识别(心理学) 计算机视觉 特征(语言学) 地图学 地理 心理学 神经科学 语言学 哲学
作者
Chenggang Lu,Jinli Yuan,Kewen Xia,Zhitao Guo,Muxuan Chen,Hengyong Yu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (10): 105003-105003 被引量:6
标识
DOI:10.1088/1361-6560/acc71f
摘要

Objective.Cardiovascular disease (CVD) is a group of diseases affecting cardiac and blood vessels, and short-axis cardiac magnetic resonance (CMR) images are considered the gold standard for the diagnosis and assessment of CVD. In CMR images, accurate segmentation of cardiac structures (e.g. left ventricle) assists in the parametric quantification of cardiac function. However, the dynamic beating of the heart renders the location of the heart with respect to other tissues difficult to resolve, and the myocardium and its surrounding tissues are similar in grayscale. This makes it challenging to accurately segment the cardiac images. Our goal is to develop a more accurate CMR image segmentation approach.Approach.In this study, we propose a regional perception and multi-scale feature fusion network (RMFNet) for CMR image segmentation. We design two regional perception modules, a window selection transformer (WST) module and a grid extraction transformer (GET) module. The WST module introduces a window selection block to adaptively select the window of interest to perceive information, and a windowed transformer block to enhance global information extraction within each feature window. The WST module enhances the network performance by improving the window of interest. The GET module grids the feature maps to decrease the redundant information in the feature maps and enhances the extraction of latent feature information of the network. The RMFNet further introduces a novel multi-scale feature extraction module to improve the ability to retain detailed information.Main results.The RMFNet is validated with experiments on three cardiac data sets. The results show that the RMFNet outperforms other advanced methods in overall performance. The RMFNet is further validated for generalizability on a multi-organ data set. The results also show that the RMFNet surpasses other comparison methods.Significance.Accurate medical image segmentation can reduce the stress of radiologists and play an important role in image-guided clinical procedures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Twonej应助阿及君采纳,获得30
1秒前
1秒前
捞鱼完成签到,获得积分10
2秒前
我是老大应助欣喜访冬采纳,获得10
2秒前
顾矜应助帅b采纳,获得10
2秒前
ding应助能干储采纳,获得10
3秒前
3秒前
柱zzz发布了新的文献求助10
4秒前
安静曼云发布了新的文献求助10
4秒前
科研通AI2S应助包容的瑾瑜采纳,获得10
4秒前
丁一发布了新的文献求助10
4秒前
淡定的往事完成签到,获得积分10
5秒前
blue发布了新的文献求助20
5秒前
1108完成签到,获得积分20
5秒前
李健的小迷弟应助幽幽采纳,获得10
6秒前
甜甜晓露完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
完美世界应助迷路沉鱼采纳,获得10
7秒前
共享精神应助干净凝梦采纳,获得10
8秒前
星辰大海应助顺利萃采纳,获得10
8秒前
9秒前
9秒前
Zeee应助善良的飞鸟采纳,获得10
9秒前
9秒前
Tanya完成签到 ,获得积分10
11秒前
asdfzxcv应助感动的安阳采纳,获得10
12秒前
12秒前
Kisace完成签到 ,获得积分10
13秒前
大个应助闪闪问蕊采纳,获得10
14秒前
无理发布了新的文献求助10
14秒前
SciGPT应助kjwu采纳,获得10
15秒前
15秒前
aga完成签到,获得积分10
15秒前
16秒前
浅忆完成签到,获得积分10
16秒前
16秒前
MOFS完成签到,获得积分10
16秒前
17秒前
大个应助ZequnFan采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643469
求助须知:如何正确求助?哪些是违规求助? 4761277
关于积分的说明 15020918
捐赠科研通 4801788
什么是DOI,文献DOI怎么找? 2567067
邀请新用户注册赠送积分活动 1524836
关于科研通互助平台的介绍 1484403