The enhanced charge separation over dual Z-scheme MoS2@g-C3N4/ZIF-8(Zn) photocatalyst: The boosted Fenton activation model and DFT calculation

X射线光电子能谱 光催化 光化学 异质结 电子顺磁共振 激进的 化学 降级(电信) 材料科学 化学工程 催化作用 光电子学 计算机科学 有机化学 物理 工程类 电信 核磁共振
作者
Tao Xu,Shi-Xian Guan,Luobing Tang,Jian‐Yong Zhang,Chun Luo,Haozhi Wang,Na Zhang
出处
期刊:Journal of Photochemistry and Photobiology A-chemistry [Elsevier]
卷期号:441: 114756-114756 被引量:11
标识
DOI:10.1016/j.jphotochem.2023.114756
摘要

The synergistic effects of photocatalytic activation Fenton reaction is considered to be a promising method to degrade the organic contaminant. Herein, a dual Z-scheme MoS2@g-C3N4/ZIF-8(Zn) (donated as MCZ) heterojunction is designed via a simple assembly approach. The ultraviolet photoelectron spectroscopy (UPS), Mott-Schottky curves (M-S), transient photovoltage (TPV), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculation reveal the electron transfer from n-type g-C3N4 or ZIF-8(Zn) to p-type MoS2, providing the platform for band construction and dual Z-scheme model. The optional modulation of the MCZ-x conjunction has efficiently separated photogenerated charge and significantly reactive species through Fenton activation under visible light irradiation. The results indicate that the degradation efficiency of methylene blue (MB) and oxytetracycline (OTC) by MCZ-7.5 could reach 99.7% and 97% only within 30 s and 5 min, respectively, much higher than that of MCZ + vis and MCZ + Fenton. Electron-spin-resonance (ESR) and radical scavenger experiments confirm that the ·OH and ·O2– are the dominated reactive oxygen species (ROS). It is speculated the MoS2 based double Z-pathway heterostructure can accelerate coupling effect of photocatalytic and Fenton reaction in solving practical environmental issues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tllxxx发布了新的文献求助10
刚刚
77发布了新的文献求助10
刚刚
超级翠完成签到,获得积分10
1秒前
科研通AI6应助小猪采纳,获得10
1秒前
丘比特应助温柔的尔芙采纳,获得10
1秒前
2秒前
JJW发布了新的文献求助10
3秒前
3秒前
3秒前
愫浅发布了新的文献求助10
4秒前
4秒前
科研通AI6应助桃子采纳,获得10
4秒前
脑洞疼应助yxq采纳,获得10
5秒前
5秒前
5秒前
reborn发布了新的文献求助10
6秒前
6秒前
科研通AI6应助猪头采纳,获得10
7秒前
7秒前
华杰发布了新的文献求助10
9秒前
蓝天发布了新的文献求助10
10秒前
愫浅完成签到,获得积分10
11秒前
叮叮发布了新的文献求助10
12秒前
12秒前
山楂发布了新的文献求助10
12秒前
yuanshl1985发布了新的文献求助10
12秒前
张成协完成签到,获得积分10
12秒前
科研通AI6应助PP采纳,获得10
13秒前
温衡的言希完成签到 ,获得积分10
13秒前
乙醇完成签到 ,获得积分0
14秒前
量子星尘发布了新的文献求助10
14秒前
甜甜衬衫发布了新的文献求助10
14秒前
苏益潭完成签到,获得积分10
14秒前
15秒前
酷波er应助LSH970829采纳,获得10
15秒前
闫霄溯完成签到,获得积分10
16秒前
16秒前
Orange应助郝薇薇薇薇儿采纳,获得30
16秒前
所所应助xuan2022采纳,获得100
16秒前
所所应助郝薇薇薇薇儿采纳,获得30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648490
求助须知:如何正确求助?哪些是违规求助? 4775560
关于积分的说明 15044364
捐赠科研通 4807469
什么是DOI,文献DOI怎么找? 2570809
邀请新用户注册赠送积分活动 1527552
关于科研通互助平台的介绍 1486499