Meta Learning with Adaptive Loss Weight for Low-Resource Speech Recognition

计算机科学 初始化 元学习(计算机科学) 人工智能 理论(学习稳定性) 一般化 机器学习 卷积神经网络 梯度下降 人工神经网络 语音识别 数学 任务(项目管理) 数学分析 管理 经济 程序设计语言
作者
Qiulin Wang,Wenxuan Hu,Lin Li,Qingyang Hong
标识
DOI:10.1109/icassp49357.2023.10094936
摘要

Model Agnostic Meta-Learning (MAML) is an effective meta-learning algorithm for low-resource automatic speech recognition (ASR). It uses gradient descent to learn the initialization parameters of the model through various languages, making the model quickly adapt to unseen low-resource languages. But MAML is unstable due to its unique bilevel loss backward structure, which significantly affects the stability and generalization of the model. Since various languages have different contributions to the target language, the loss weights corresponding to the effects of diverse languages require costly manual adjustment in the training stage. Proper selection of these weights will influence the performance of the entire model. In this paper, we propose to apply a loss weight adaption method to MAML using Convolutional Neural Network (CNN) with Homoscedastic Uncertainty. The results of experiments showed that the proposed method outperformed previous gradient-based meta-learning methods and other loss weights adaption methods, and it further improved the stability and effectiveness of MAML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
W哇发布了新的文献求助30
刚刚
Jenny应助AD采纳,获得10
刚刚
田様应助闪闪飞机采纳,获得10
1秒前
1秒前
写不出来发布了新的文献求助10
1秒前
mary完成签到,获得积分10
1秒前
甲基醚完成签到 ,获得积分10
2秒前
兴奋的凝丝完成签到,获得积分10
2秒前
reck发布了新的文献求助10
3秒前
缥缈的语雪完成签到 ,获得积分10
3秒前
feifei发布了新的文献求助10
3秒前
3秒前
silong发布了新的文献求助10
4秒前
4秒前
4秒前
123_完成签到,获得积分10
4秒前
无花果应助初吻还在采纳,获得10
4秒前
4秒前
5秒前
Gzqq完成签到,获得积分10
5秒前
璃月稻妻完成签到,获得积分10
6秒前
6秒前
111111完成签到,获得积分10
6秒前
坚强的紊完成签到,获得积分10
6秒前
orixero应助黄紫红蓝采纳,获得10
6秒前
会长大的幸福完成签到 ,获得积分10
7秒前
iNk应助lalala采纳,获得10
7秒前
8秒前
无情念之发布了新的文献求助10
8秒前
100发布了新的文献求助10
8秒前
wanyanjin完成签到,获得积分10
9秒前
周老八发布了新的文献求助10
9秒前
9秒前
9秒前
YL发布了新的文献求助10
10秒前
qucheng完成签到 ,获得积分10
10秒前
Athos_1992完成签到,获得积分10
10秒前
隐形曼青应助一平采纳,获得10
10秒前
11秒前
写不出来完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672