活力测定
细胞凋亡
氧化应激
基因敲除
免疫印迹
再灌注损伤
一氧化氮合酶
活性氧
下调和上调
药理学
神经保护
一氧化氮
化学
细胞生物学
生物
缺血
医学
内分泌学
内科学
生物化学
基因
作者
Rundong Chen,Lei Qian,Jin Fu,Jiajun Qin,Xianzhen Chen,Xiaolong Xu
标识
DOI:10.1016/j.neuint.2023.105586
摘要
Cerebral ischemic/reperfusion (I/R) injury has become a great challenge harming patients' life. This study aims to explore the regulatory role of Preso during cerebral I/R injury and to elucidate the potential mechanism. Here, we established a middle cerebral artery occlusion/reperfusion (MCAO/IR) rat model and an oxygen-glucose deprivation/reoxygenation (OGD/R)-mediated PC12 cell model to evaluate the expression and role of Preso following cerebral I/R injury. Histopathological injury and infarct size were assessed by hematoxylin and eosin (HE) and 2,3,5-Triphenyltertrazolium chloride (TTC) staining. Double immunofluorescence staining was performed to assess neuronal apoptosis in brain tissues. Cell counting kit-8 (CCK-8) and flow cytometry were performed to evaluate cell viability and apoptosis, respectively. The reactive oxygen species (ROS) and nitric oxide (NO) levels were detected using their respective detection kits, and the expression of corresponding proteins was examined adopting Western blot. The results showed that Preso was upregulated in OGD/R-induced PC12 cells and MCAO rats. Preso knockdown significantly reduced OGD/R-caused viability loss, apoptosis and oxidative stress in PC12 cells, and reduced infarct size, attenuated histological injury, and inhibited apoptosis and oxidative stress in the brain tissues from MCAO rats, as well as inhibiting the expression of postsynaptic density protein-95 (PSD95) and nitric oxide synthase (nNOS) and repressing YAP phosphorylation in vitro. In addition, the protective role of Preso knockdown against cerebral I/R injury was partly strengthened by IC87201, the nNOS/PSD95 interaction inhibitor, or weakened by Verteporfin (Vert), an inhibitor of YAP. In conclusion, Perso knockdown might exert a protective role against cerebral I/R injury via regulating PSD95-nNOS and YAP pathways, providing a potential therapeutic target for the treatment of ischemic stroke.
科研通智能强力驱动
Strongly Powered by AbleSci AI