The effects of sheet and network solid structures of similar TPMS scaffold architectures on permeability, wall shear stress, and velocity: A CFD analysis

小旋翼机 材料科学 剪应力 多孔性 磁导率 脚手架 复合材料 曲率 剪切(地质) 生物医学工程 工程类 几何学 化学 生物化学 数学 共聚物 聚合物
作者
Derya Karaman,Hojjat Ghahramanzadeh Asl
出处
期刊:Medical Engineering & Physics [Elsevier]
卷期号:118: 104024-104024 被引量:22
标识
DOI:10.1016/j.medengphy.2023.104024
摘要

Triply periodic minimal surface (TPMS) is known mathematically as a surface with mean curvature of zero and replicated in three directions infinitely. Providing the pore combination in porous structures with surface connections, they provide large surface areas. This study aims to determine the effects of the network solid and sheet solid structures in the three different TPMS architectures on bone regeneration. Evaluation is made for Diamond, Gyroid, and I-WP structures, which are widely preferred architectures in terms of mechanical strength. Scaffolds are modeled as both network solid and sheet solid unit cells with similar porosities (60%, 70%, and 80%). Flow analyses are performed with the Computational Fluid Dynamics method to determine of potential for bone cell development of scaffolds. The permeability, wall shear stress on the surfaces, and the flow velocity distribution of the scaffolds are obtained with these analyses. The permeability value of 18 scaffolds is between the permeability values determined for trabecular bone. The permeability of network solid TPMS scaffolds for the same architectures is higher than sheet solid TPMS scaffolds due to the low pressures generated. The maximum wall shear stress in scaffolds decreases as porosity increases. Since the maximum wall shear stresses occur in less than 0.1% area on the scaffold surfaces, it is more appropriate to examine distribution of these stresses on the scaffold surfaces. Sheet solid structures within TPMS are more advantageous for biomechanical environments due to their greater surface area at similar porosities, wall shear stress, and permeability values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乱泽华完成签到 ,获得积分10
刚刚
恬恬完成签到,获得积分10
2秒前
ECT完成签到,获得积分10
3秒前
慕青应助董卓小蛮腰采纳,获得10
4秒前
5秒前
科研通AI6应助wz采纳,获得10
6秒前
6秒前
香蕉觅云应助Lucien采纳,获得30
6秒前
6秒前
6秒前
7秒前
Xavier完成签到,获得积分20
7秒前
Criminology34应助海子采纳,获得10
7秒前
8秒前
大白菜完成签到,获得积分10
8秒前
再见一日完成签到,获得积分10
8秒前
8秒前
9秒前
DY完成签到,获得积分0
9秒前
9秒前
ting_jiang完成签到,获得积分10
10秒前
philipa完成签到,获得积分10
10秒前
10秒前
何安发布了新的文献求助10
11秒前
Orange应助松尐采纳,获得10
11秒前
ning完成签到,获得积分10
11秒前
majf发布了新的文献求助10
11秒前
沉默的行云完成签到,获得积分20
12秒前
strongfrog发布了新的文献求助10
12秒前
大模型应助12138采纳,获得10
13秒前
圆子发布了新的文献求助10
14秒前
14秒前
豆本豆发布了新的文献求助10
15秒前
15秒前
lucky完成签到,获得积分10
16秒前
Clara完成签到,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
烂漫铃铛发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836