ZnO‐Embedded Expanded Graphite Composite Anodes with Controlled Charge Storage Mechanism Enabling Operation of Lithium‐Ion Batteries at Ultra‐Low Temperatures

阳极 石墨 材料科学 锂(药物) 扩散 电化学 电池(电) 化学工程 电化学动力学 阴极 复合数 纳米技术 离子 电极 复合材料 化学 物理化学 热力学 有机化学 物理 工程类 内分泌学 功率(物理) 医学
作者
Kun Ryu,Michael J. Lee,Kyungbin Lee,Seung Woo Lee
出处
期刊:Energy & environmental materials [Wiley]
卷期号:6 (4) 被引量:19
标识
DOI:10.1002/eem2.12662
摘要

As lithium (Li)‐ion batteries expand their applications, operating over a wide temperature range becomes increasingly important. However, the low‐temperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions (Li + ). Here, zinc oxide (ZnO) nanoparticles are incorporated into the expanded graphite to improve Li + diffusion kinetics, resulting in a significant improvement in low‐temperature performance. The ZnO–embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structure‐charge storage mechanism‐performance relationship with a focus on low‐temperature applications. Electrochemical analysis reveals that the ZnO–embedded expanded graphite anode with nano‐sized ZnO maintains a large portion of the diffusion‐controlled charge storage mechanism at an ultra‐low temperature of −50 °C. Due to this significantly enhanced Li + diffusion rate, a full cell with the ZnO–embedded expanded graphite anode and a LiNi 0.88 Co 0.09 Al 0.03 O 2 cathode delivers high capacities of 176 mAh g −1 at 20 °C and 86 mAh g −1 at −50 °C at a high rate of 1 C. The outstanding low‐temperature performance of the composite anode by improving the Li + diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low‐temperature Li‐ion battery operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zz完成签到,获得积分10
刚刚
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
Ancy应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得20
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
古猫宁完成签到,获得积分10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
11112233完成签到,获得积分10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
赘婿应助HL采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得150
2秒前
今后应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
fuuu完成签到,获得积分20
3秒前
3秒前
Hello应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911216
求助须知:如何正确求助?哪些是违规求助? 4186705
关于积分的说明 13001055
捐赠科研通 3954531
什么是DOI,文献DOI怎么找? 2168334
邀请新用户注册赠送积分活动 1186721
关于科研通互助平台的介绍 1094125