Gradient-Adaptive Pareto Optimization for Constrained Reinforcement Learning

帕累托原理 数学优化 强化学习 计算机科学 多目标优化 帕累托最优 摄动(天文学) 最优化问题 梯度法 数学 人工智能 物理 量子力学
作者
Zhuan Zhou,Ming Huang,Feiyang Pan,Jing He,Xiang Ao,Dandan Tu,Qiang He
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (9): 11443-11451 被引量:2
标识
DOI:10.1609/aaai.v37i9.26353
摘要

Constrained Reinforcement Learning (CRL) burgeons broad interest in recent years, which pursues maximizing long-term returns while constraining costs. Although CRL can be cast as a multi-objective optimization problem, it is still facing the key challenge that gradient-based Pareto optimization methods tend to stick to known Pareto-optimal solutions even when they yield poor returns (e.g., the safest self-driving car that never moves) or violate the constraints (e.g., the record-breaking racer that crashes the car). In this paper, we propose Gradient-adaptive Constrained Policy Optimization (GCPO for short), a novel Pareto optimization method for CRL with two adaptive gradient recalibration techniques. First, to find Pareto-optimal solutions with balanced performance over all targets, we propose gradient rebalancing which forces the agent to improve more on under-optimized objectives at every policy iteration. Second, to guarantee that the cost constraints are satisfied, we propose gradient perturbation that can temporarily sacrifice the returns for costs. Experiments on the SafetyGym benchmarks show that our method consistently outperforms previous CRL methods in reward while satisfying the constraints.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
YLC完成签到 ,获得积分10
1秒前
方汀完成签到,获得积分10
1秒前
科研通AI6应助兔子采纳,获得10
2秒前
高高珩完成签到 ,获得积分10
2秒前
体贴西装完成签到 ,获得积分10
2秒前
shbkmy完成签到,获得积分10
2秒前
3秒前
星辰大海应助fjhsg25采纳,获得10
4秒前
水123发布了新的文献求助10
5秒前
5秒前
JiaJia发布了新的文献求助10
5秒前
优雅的皮卡丘完成签到,获得积分10
6秒前
6秒前
FashionBoy应助可爱中蓝采纳,获得10
6秒前
7秒前
7秒前
XxxxxxENT完成签到 ,获得积分10
7秒前
8秒前
ZLL发布了新的文献求助10
8秒前
大成完成签到,获得积分10
9秒前
xuan发布了新的文献求助10
11秒前
金枪鱼子完成签到,获得积分10
11秒前
乐观忆翠关注了科研通微信公众号
11秒前
迷路的十四完成签到,获得积分10
11秒前
12秒前
冰糖糖橘完成签到 ,获得积分10
12秒前
ks完成签到,获得积分10
12秒前
桐桐应助水123采纳,获得10
12秒前
大成发布了新的文献求助10
13秒前
言午完成签到 ,获得积分10
13秒前
完美麦片完成签到,获得积分10
14秒前
科研通AI6应助khx采纳,获得10
14秒前
传奇3应助tong采纳,获得10
15秒前
情怀应助savesunshine1022采纳,获得10
15秒前
不朽阳神完成签到,获得积分10
16秒前
17秒前
狂野沧海完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600283
求助须知:如何正确求助?哪些是违规求助? 4685999
关于积分的说明 14841023
捐赠科研通 4676153
什么是DOI,文献DOI怎么找? 2538671
邀请新用户注册赠送积分活动 1505744
关于科研通互助平台的介绍 1471167