A Factor Graph Optimization Method for High-Precision IMU-Based Navigation System

惯性测量装置 因子图 计算机科学 人工智能 图形 传感器融合 惯性导航系统 计算机视觉 算法 惯性参考系 解码方法 物理 理论计算机科学 量子力学
作者
Pin Lyu,Bingqing Wang,Jizhou Lai,Shiyu Bai,Ming Liu,Wenbin Yu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:14
标识
DOI:10.1109/tim.2023.3291779
摘要

Multi-sensor integrated navigation systems based on factor graph are increasingly used on indoor robots, UAVs, and other vehicles. The output information of the equipped low-cost inertial measurement unit (IMU) is usually processed by IMU pre-integration techniques. As the accuracy of IMU increases, the traditional factor graph using the IMU pre-integration method need to be improved. This paper proposes a factor graph optimization algorithm for high-precision IMU based navigation system. An improved IMU pre-integration method is used in the algorithm to deal with the data from inertial sensors. Different from traditional methods, the effect of the curvature of the Earth's surface on the IMU pre-integration method is taken into account. Meanwhile, the parameters affecting the accuracy of the IMU pre-integration method are corrected by the estimated navigation state of the carrier. Thus, a more accurate relative constraint is constructed. After that, this constraint and other measurement information are fused by the factor graph optimization algorithm. Finally, different simulation tests and field vehicle tests are carried out to validate the performance of the proposed method. The test results show that the proposed method can improve the carrier positioning accuracy by 20% to 90% when using high-precision inertial sensors under different conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Simple发布了新的文献求助10
1秒前
2秒前
FunHigh发布了新的文献求助10
2秒前
2秒前
止戈发布了新的文献求助10
3秒前
舒心冰旋发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
科研挂完成签到,获得积分10
6秒前
8秒前
嘿帕王教官完成签到,获得积分10
8秒前
8秒前
zero完成签到,获得积分10
9秒前
怡然的怀莲完成签到 ,获得积分20
9秒前
10秒前
11秒前
李健的小迷弟应助Simple采纳,获得10
11秒前
12秒前
coco发布了新的文献求助10
13秒前
动漫大师发布了新的文献求助10
13秒前
石飞飞发布了新的文献求助10
13秒前
明芷蝶发布了新的文献求助10
13秒前
NexusExplorer应助dawei采纳,获得10
14秒前
dkxy发布了新的文献求助10
15秒前
lily完成签到,获得积分10
16秒前
16秒前
16秒前
SVEA完成签到,获得积分10
17秒前
zzx发布了新的文献求助30
17秒前
科研通AI5应助科研通管家采纳,获得30
17秒前
科研小民工应助科研通管家采纳,获得200
17秒前
17秒前
Ava应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652307
求助须知:如何正确求助?哪些是违规求助? 3216514
关于积分的说明 9712382
捐赠科研通 2924251
什么是DOI,文献DOI怎么找? 1601585
邀请新用户注册赠送积分活动 754315
科研通“疑难数据库(出版商)”最低求助积分说明 733019