CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data

插补(统计学) 辍学(神经网络) 计算机科学 缺少数据 人工智能 推论 机器学习 数据挖掘
作者
Yuchen Shi,Jian Wan,Xin Zhang,Yuyu Yin
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107263-107263 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107263
摘要

Single-cell RNA-sequencing (scRNA-seq) technology has revolutionized the study of cell heterogeneity and biological interpretation at the single-cell level. However, the dropout events commonly present in scRNA-seq data can markedly reduce the reliability of downstream analysis. Existing imputation methods often overlook the discrepancy between the established cell relationship from dropout noisy data and reality, which limits their performances due to the learned untrustworthy cell representations. Here, we propose a novel approach called the CL-Impute (Contrastive Learning-based Impute) model for estimating missing genes without relying on preconstructed cell relationships. CL-Impute utilizes contrastive learning and a self-attention network to address this challenge. Specifically, the proposed CL-Impute model leverages contrastive learning to learn cell representations from the self-perspective of dropout events, whereas the self-attention network captures cell relationships from the global-perspective. Experimental results on four benchmark datasets, including quantitative assessment, cell clustering, gene identification, and trajectory inference, demonstrate the superior performance of CL-Impute compared with that of existing state-of-the-art imputation methods. Furthermore, our experiment reveals that combining contrastive learning and masking cell augmentation enables the model to learn actual latent features from noisy data with a high rate of dropout events, enhancing the reliability of imputed values. CL-Impute is a novel contrastive learning-based method to impute scRNA-seq data in the context of high dropout rate. The source code of CL-Impute is available at https://github.com/yuchen21-web/Imputation-for-scRNA-seq.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
variant完成签到,获得积分10
刚刚
官官过完成签到,获得积分10
1秒前
小橘子发布了新的文献求助10
2秒前
隐形曼青应助多情问儿采纳,获得10
2秒前
Apei发布了新的文献求助30
2秒前
variant发布了新的文献求助10
3秒前
3秒前
拓展完成签到 ,获得积分10
3秒前
6秒前
安静的冰蓝完成签到 ,获得积分10
6秒前
Olivergaga完成签到,获得积分20
7秒前
7秒前
丁翔关注了科研通微信公众号
8秒前
Owen应助滕雪嘻嘻嘻嘻嘻采纳,获得10
9秒前
gan发布了新的文献求助10
9秒前
9秒前
10秒前
小赛哥完成签到,获得积分10
10秒前
12秒前
六尺巷完成签到,获得积分10
12秒前
开放蓝天应助LaTeXer采纳,获得10
12秒前
12秒前
淡定跳跳糖完成签到,获得积分10
13秒前
懵懂的寻冬应助丸子采纳,获得10
13秒前
Orange应助Lingtem采纳,获得10
14秒前
科研通AI6应助UP采纳,获得10
14秒前
Sunnut发布了新的文献求助10
14秒前
小赛哥发布了新的文献求助10
15秒前
superbanggg完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
16秒前
16秒前
17秒前
刘乐完成签到,获得积分10
17秒前
LaTeXer重新开启了CoverSx文献应助
18秒前
嘻嘻发布了新的文献求助10
18秒前
靓丽的鱼发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487