CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data

插补(统计学) 辍学(神经网络) 计算机科学 缺少数据 人工智能 推论 机器学习 数据挖掘
作者
Yuchen Shi,Jian Wan,Xin Zhang,Yuyu Yin
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107263-107263 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107263
摘要

Single-cell RNA-sequencing (scRNA-seq) technology has revolutionized the study of cell heterogeneity and biological interpretation at the single-cell level. However, the dropout events commonly present in scRNA-seq data can markedly reduce the reliability of downstream analysis. Existing imputation methods often overlook the discrepancy between the established cell relationship from dropout noisy data and reality, which limits their performances due to the learned untrustworthy cell representations. Here, we propose a novel approach called the CL-Impute (Contrastive Learning-based Impute) model for estimating missing genes without relying on preconstructed cell relationships. CL-Impute utilizes contrastive learning and a self-attention network to address this challenge. Specifically, the proposed CL-Impute model leverages contrastive learning to learn cell representations from the self-perspective of dropout events, whereas the self-attention network captures cell relationships from the global-perspective. Experimental results on four benchmark datasets, including quantitative assessment, cell clustering, gene identification, and trajectory inference, demonstrate the superior performance of CL-Impute compared with that of existing state-of-the-art imputation methods. Furthermore, our experiment reveals that combining contrastive learning and masking cell augmentation enables the model to learn actual latent features from noisy data with a high rate of dropout events, enhancing the reliability of imputed values. CL-Impute is a novel contrastive learning-based method to impute scRNA-seq data in the context of high dropout rate. The source code of CL-Impute is available at https://github.com/yuchen21-web/Imputation-for-scRNA-seq.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明亮雪冥完成签到 ,获得积分10
1秒前
1秒前
hhf发布了新的文献求助10
3秒前
两院候选人应助sunishope采纳,获得10
4秒前
咩了个咩发布了新的文献求助10
4秒前
陳新儒完成签到,获得积分10
5秒前
5秒前
6秒前
文献求助发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
wx发布了新的文献求助10
8秒前
爻解完成签到,获得积分10
9秒前
9秒前
LNN完成签到,获得积分10
9秒前
10秒前
哈理老萝卜完成签到 ,获得积分10
10秒前
kyxx2023完成签到,获得积分10
12秒前
卢伟完成签到,获得积分10
13秒前
空白发布了新的文献求助10
13秒前
14秒前
左手树完成签到,获得积分10
15秒前
虚幻龙猫发布了新的文献求助10
17秒前
Zhang完成签到,获得积分10
18秒前
kyxx2023发布了新的文献求助10
19秒前
hhf完成签到,获得积分10
19秒前
背完单词好睡觉完成签到 ,获得积分10
22秒前
冷静的奇迹完成签到,获得积分10
24秒前
JamesPei应助乐观梦芝采纳,获得10
25秒前
jio大洁关注了科研通微信公众号
25秒前
26秒前
26秒前
26秒前
27秒前
28秒前
科目三应助科研通管家采纳,获得10
28秒前
脑洞疼应助科研通管家采纳,获得10
28秒前
良辰应助科研通管家采纳,获得10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313951
求助须知:如何正确求助?哪些是违规求助? 2946315
关于积分的说明 8529594
捐赠科研通 2621967
什么是DOI,文献DOI怎么找? 1434250
科研通“疑难数据库(出版商)”最低求助积分说明 665190
邀请新用户注册赠送积分活动 650738