已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data

插补(统计学) 辍学(神经网络) 计算机科学 缺少数据 人工智能 推论 机器学习 数据挖掘
作者
Yuchen Shi,Jian Wan,Xin Zhang,Yuyu Yin
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107263-107263 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107263
摘要

Single-cell RNA-sequencing (scRNA-seq) technology has revolutionized the study of cell heterogeneity and biological interpretation at the single-cell level. However, the dropout events commonly present in scRNA-seq data can markedly reduce the reliability of downstream analysis. Existing imputation methods often overlook the discrepancy between the established cell relationship from dropout noisy data and reality, which limits their performances due to the learned untrustworthy cell representations. Here, we propose a novel approach called the CL-Impute (Contrastive Learning-based Impute) model for estimating missing genes without relying on preconstructed cell relationships. CL-Impute utilizes contrastive learning and a self-attention network to address this challenge. Specifically, the proposed CL-Impute model leverages contrastive learning to learn cell representations from the self-perspective of dropout events, whereas the self-attention network captures cell relationships from the global-perspective. Experimental results on four benchmark datasets, including quantitative assessment, cell clustering, gene identification, and trajectory inference, demonstrate the superior performance of CL-Impute compared with that of existing state-of-the-art imputation methods. Furthermore, our experiment reveals that combining contrastive learning and masking cell augmentation enables the model to learn actual latent features from noisy data with a high rate of dropout events, enhancing the reliability of imputed values. CL-Impute is a novel contrastive learning-based method to impute scRNA-seq data in the context of high dropout rate. The source code of CL-Impute is available at https://github.com/yuchen21-web/Imputation-for-scRNA-seq.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇湘完成签到,获得积分10
1秒前
典雅胜完成签到 ,获得积分10
1秒前
爆米花应助ppg123采纳,获得10
2秒前
顺心凝天发布了新的文献求助10
2秒前
易槐完成签到 ,获得积分10
2秒前
maozcmt发布了新的文献求助10
2秒前
阳光的雪碧完成签到,获得积分10
3秒前
程小柒完成签到 ,获得积分10
4秒前
善学以致用应助YZQ采纳,获得10
5秒前
wen完成签到,获得积分10
5秒前
杨涛完成签到,获得积分10
5秒前
鲁路修完成签到,获得积分10
6秒前
6秒前
非泥完成签到,获得积分10
7秒前
7秒前
rx123完成签到,获得积分20
7秒前
moumou完成签到 ,获得积分10
8秒前
smh完成签到 ,获得积分10
9秒前
123456完成签到 ,获得积分10
10秒前
留胡子的不弱完成签到 ,获得积分10
10秒前
明钟达完成签到,获得积分10
10秒前
chengymao完成签到,获得积分10
11秒前
11秒前
拼搏的帽子完成签到 ,获得积分10
12秒前
jie完成签到 ,获得积分10
12秒前
Much完成签到 ,获得积分10
14秒前
howeVer完成签到 ,获得积分10
14秒前
ppg123发布了新的文献求助10
14秒前
wen发布了新的文献求助10
16秒前
pluvia完成签到,获得积分10
17秒前
想不出来完成签到 ,获得积分10
17秒前
狂野的蜡烛完成签到,获得积分10
17秒前
酒醉的蝴蝶完成签到 ,获得积分10
18秒前
rx完成签到,获得积分20
19秒前
迷路的台灯完成签到 ,获得积分10
20秒前
食品小帕菜完成签到,获得积分10
20秒前
笔至梦花完成签到 ,获得积分10
21秒前
21秒前
Sun完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787716
求助须知:如何正确求助?哪些是违规求助? 5701333
关于积分的说明 15472659
捐赠科研通 4916048
什么是DOI,文献DOI怎么找? 2646073
邀请新用户注册赠送积分活动 1593777
关于科研通互助平台的介绍 1548061