CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data

插补(统计学) 辍学(神经网络) 计算机科学 缺少数据 人工智能 推论 机器学习 数据挖掘
作者
Yuchen Shi,Jian Wan,Xin Zhang,Yuyu Yin
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107263-107263 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107263
摘要

Single-cell RNA-sequencing (scRNA-seq) technology has revolutionized the study of cell heterogeneity and biological interpretation at the single-cell level. However, the dropout events commonly present in scRNA-seq data can markedly reduce the reliability of downstream analysis. Existing imputation methods often overlook the discrepancy between the established cell relationship from dropout noisy data and reality, which limits their performances due to the learned untrustworthy cell representations. Here, we propose a novel approach called the CL-Impute (Contrastive Learning-based Impute) model for estimating missing genes without relying on preconstructed cell relationships. CL-Impute utilizes contrastive learning and a self-attention network to address this challenge. Specifically, the proposed CL-Impute model leverages contrastive learning to learn cell representations from the self-perspective of dropout events, whereas the self-attention network captures cell relationships from the global-perspective. Experimental results on four benchmark datasets, including quantitative assessment, cell clustering, gene identification, and trajectory inference, demonstrate the superior performance of CL-Impute compared with that of existing state-of-the-art imputation methods. Furthermore, our experiment reveals that combining contrastive learning and masking cell augmentation enables the model to learn actual latent features from noisy data with a high rate of dropout events, enhancing the reliability of imputed values. CL-Impute is a novel contrastive learning-based method to impute scRNA-seq data in the context of high dropout rate. The source code of CL-Impute is available at https://github.com/yuchen21-web/Imputation-for-scRNA-seq.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LUMO完成签到 ,获得积分10
刚刚
售后延长发布了新的文献求助20
2秒前
tudousi完成签到 ,获得积分10
5秒前
共享精神应助快乐仙知采纳,获得10
8秒前
11秒前
王子安举报duanduan求助涉嫌违规
12秒前
13秒前
王子安应助JaneChen采纳,获得10
14秒前
14秒前
klicking发布了新的文献求助100
16秒前
jodie0105发布了新的文献求助10
18秒前
李爱国应助定烜采纳,获得10
19秒前
今今发布了新的文献求助10
19秒前
快乐仙知发布了新的文献求助10
20秒前
老金金完成签到 ,获得积分10
20秒前
汉堡包应助da1234采纳,获得10
21秒前
阳佟水蓉完成签到,获得积分10
22秒前
23秒前
March应助balko采纳,获得10
25秒前
善学以致用应助陈敏采纳,获得10
26秒前
核桃应助不忘初心采纳,获得10
28秒前
量子星尘发布了新的文献求助10
29秒前
30秒前
32秒前
zsy发布了新的文献求助10
33秒前
这个夏天完成签到,获得积分10
35秒前
39秒前
科研通AI5应助哈哈哈采纳,获得10
40秒前
眷顾完成签到,获得积分10
41秒前
空曲完成签到 ,获得积分10
41秒前
42秒前
42秒前
亚琳完成签到,获得积分10
43秒前
ankey完成签到,获得积分10
45秒前
小天狼星发布了新的文献求助10
47秒前
48秒前
hh发布了新的文献求助10
48秒前
49秒前
49秒前
SHAO应助agoni采纳,获得10
50秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167