Adaptive Dynamic Filtering Network for Image Denoising

计算机科学 卷积(计算机科学) 特征(语言学) 核(代数) 块(置换群论) 背景(考古学) 滤波器(信号处理) 人工智能 模式识别(心理学) 算法 计算机视觉 人工神经网络 数学 古生物学 语言学 哲学 几何学 组合数学 生物
作者
Hao Shen,Zhong‐Qiu Zhao,Wandi Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (2): 2227-2235 被引量:20
标识
DOI:10.1609/aaai.v37i2.25317
摘要

In image denoising networks, feature scaling is widely used to enlarge the receptive field size and reduce computational costs. This practice, however, also leads to the loss of high-frequency information and fails to consider within-scale characteristics. Recently, dynamic convolution has exhibited powerful capabilities in processing high-frequency information (e.g., edges, corners, textures), but previous works lack sufficient spatial contextual information in filter generation. To alleviate these issues, we propose to employ dynamic convolution to improve the learning of high-frequency and multi-scale features. Specifically, we design a spatially enhanced kernel generation (SEKG) module to improve dynamic convolution, enabling the learning of spatial context information with a very low computational complexity. Based on the SEKG module, we propose a dynamic convolution block (DCB) and a multi-scale dynamic convolution block (MDCB). The former enhances the high-frequency information via dynamic convolution and preserves low-frequency information via skip connections. The latter utilizes shared adaptive dynamic kernels and the idea of dilated convolution to achieve efficient multi-scale feature extraction. The proposed multi-dimension feature integration (MFI) mechanism further fuses the multi-scale features, providing precise and contextually enriched feature representations. Finally, we build an efficient denoising network with the proposed DCB and MDCB, named ADFNet. It achieves better performance with low computational complexity on real-world and synthetic Gaussian noisy datasets. The source code is available at https://github.com/it-hao/ADFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
求求大家了完成签到,获得积分10
刚刚
阳光完成签到,获得积分10
刚刚
Crystal完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
乐乐应助赖道之采纳,获得10
5秒前
5秒前
Sun_Chen完成签到,获得积分10
5秒前
体贴凌柏发布了新的文献求助10
6秒前
成就的笑南完成签到 ,获得积分10
6秒前
7秒前
7秒前
wyw123完成签到,获得积分10
7秒前
求大佬帮助完成签到,获得积分10
7秒前
李健的小迷弟应助zyq采纳,获得10
8秒前
陈隆完成签到,获得积分10
8秒前
哎呀完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
mary完成签到,获得积分10
9秒前
9秒前
朱成豪发布了新的文献求助10
11秒前
deallyxyz应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
比比谁的速度快应助曾珍采纳,获得50
11秒前
11秒前
予修应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
吹雪完成签到,获得积分0
11秒前
美好的尔白完成签到,获得积分10
11秒前
O-M175完成签到,获得积分10
12秒前
Jasper应助hahaha123213123采纳,获得10
12秒前
可爱的函函应助天天向上采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029