Adaptive Dynamic Filtering Network for Image Denoising

计算机科学 卷积(计算机科学) 特征(语言学) 核(代数) 块(置换群论) 背景(考古学) 滤波器(信号处理) 人工智能 模式识别(心理学) 算法 计算机视觉 人工神经网络 数学 古生物学 语言学 哲学 几何学 组合数学 生物
作者
Hao Shen,Zhong‐Qiu Zhao,Wandi Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (2): 2227-2235 被引量:20
标识
DOI:10.1609/aaai.v37i2.25317
摘要

In image denoising networks, feature scaling is widely used to enlarge the receptive field size and reduce computational costs. This practice, however, also leads to the loss of high-frequency information and fails to consider within-scale characteristics. Recently, dynamic convolution has exhibited powerful capabilities in processing high-frequency information (e.g., edges, corners, textures), but previous works lack sufficient spatial contextual information in filter generation. To alleviate these issues, we propose to employ dynamic convolution to improve the learning of high-frequency and multi-scale features. Specifically, we design a spatially enhanced kernel generation (SEKG) module to improve dynamic convolution, enabling the learning of spatial context information with a very low computational complexity. Based on the SEKG module, we propose a dynamic convolution block (DCB) and a multi-scale dynamic convolution block (MDCB). The former enhances the high-frequency information via dynamic convolution and preserves low-frequency information via skip connections. The latter utilizes shared adaptive dynamic kernels and the idea of dilated convolution to achieve efficient multi-scale feature extraction. The proposed multi-dimension feature integration (MFI) mechanism further fuses the multi-scale features, providing precise and contextually enriched feature representations. Finally, we build an efficient denoising network with the proposed DCB and MDCB, named ADFNet. It achieves better performance with low computational complexity on real-world and synthetic Gaussian noisy datasets. The source code is available at https://github.com/it-hao/ADFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
藏沙完成签到 ,获得积分10
1秒前
1秒前
wss完成签到,获得积分10
1秒前
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得30
2秒前
大个应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
3秒前
Rondab应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
Aamidtou完成签到,获得积分10
3秒前
gogoyoco发布了新的文献求助10
4秒前
李爱国应助元元采纳,获得10
5秒前
6秒前
6秒前
6秒前
wss发布了新的文献求助10
6秒前
8秒前
Orange应助gogoyoco采纳,获得10
10秒前
颜琪给颜琪的求助进行了留言
10秒前
Steven发布了新的文献求助30
12秒前
Hexagram发布了新的文献求助10
13秒前
asdfqwer发布了新的文献求助10
13秒前
ZX801发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
cayde完成签到,获得积分10
16秒前
wt1123完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
澡雪发布了新的文献求助10
20秒前
耶耶耶完成签到,获得积分20
21秒前
左丘万怨完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976126
求助须知:如何正确求助?哪些是违规求助? 3520340
关于积分的说明 11202586
捐赠科研通 3256847
什么是DOI,文献DOI怎么找? 1798509
邀请新用户注册赠送积分活动 877645
科研通“疑难数据库(出版商)”最低求助积分说明 806516