亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An energy management strategy of deep reinforcement learning based on multi-agent architecture under self-generating conditions

强化学习 计算机科学 运动学 约束(计算机辅助设计) 发电机(电路理论) 能源管理 人工智能 功率(物理) 能量(信号处理) 工程类 数学 量子力学 经典力学 机械工程 统计 物理
作者
Chengcheng Chang,Wanzhong Zhao,Chunyan Wang,Zhongkai Luan
出处
期刊:Energy [Elsevier BV]
卷期号:283: 128536-128536 被引量:5
标识
DOI:10.1016/j.energy.2023.128536
摘要

To improve the driving efficiency of hybrid power vehicle, an energy management strategy of deep reinforcement learning based on multi-agent architecture under self-generating vehicle driving conditions is proposed. Firstly, the kinematics segments are self-generated based on the Wasserstein generative adversarial network. The generator network G is used to generate kinematics segments. The discriminator network D is used to judge the credibility of the generated kinematics segments with the Wasserstein distance. The speed distribution characteristics of the training conditions and verification conditions established based on the self-generated segments are verified. Afterward, a multi-agent algorithm based on twin delayed deep deterministic policy gradient algorithm for hybrid systems is proposed by introducing centralized training with decentralized execution framework. The engine and a motor are used as two independent agents respectively. Different reward functions are designed based on training objectives to establish a mutually beneficial relationship of cooperation-restraint between the two agents. A driving mode constraint is designed in the environment to improve sample utilization. Finally, the simulation results demonstrate that our method can achieve better performance compared with other existing works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
19秒前
26秒前
千里草完成签到,获得积分10
27秒前
彭日晓发布了新的文献求助10
29秒前
significant发布了新的文献求助10
32秒前
41秒前
55秒前
1分钟前
1分钟前
忍忍发布了新的文献求助30
1分钟前
kingcoffee完成签到 ,获得积分10
2分钟前
忍忍完成签到 ,获得积分10
2分钟前
彭日晓完成签到,获得积分10
3分钟前
3分钟前
靓丽的熠彤完成签到,获得积分10
4分钟前
4分钟前
sho完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
Ysn完成签到,获得积分10
6分钟前
MchemG应助科研通管家采纳,获得10
6分钟前
Lny发布了新的文献求助20
6分钟前
6分钟前
slayers完成签到 ,获得积分10
7分钟前
8分钟前
story发布了新的文献求助30
8分钟前
8分钟前
Owen应助光亮雁玉采纳,获得10
8分钟前
SL完成签到,获得积分10
8分钟前
乐乐应助story采纳,获得10
8分钟前
科研通AI5应助光亮雁玉采纳,获得10
8分钟前
8分钟前
爆米花应助光亮雁玉采纳,获得10
8分钟前
Lny发布了新的文献求助20
8分钟前
冰西瓜完成签到 ,获得积分0
8分钟前
科目三应助光亮雁玉采纳,获得10
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569031
求助须知:如何正确求助?哪些是违规求助? 3991376
关于积分的说明 12355741
捐赠科研通 3663539
什么是DOI,文献DOI怎么找? 2018986
邀请新用户注册赠送积分活动 1053396
科研通“疑难数据库(出版商)”最低求助积分说明 940955